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1. Don’t structural disturbances always need to be unpredictable?

No. Structural disturbances represent exogenous random changes (impulses) to

the economic system, but they do not need to be unpredictable. From a theoret-

ical perspective, it is always possible to represent agents’ information structure

equivalently in terms of purely unpredictable exogenous disturbances (e.g. see

the “news representation” in Theorem 1 of Chahrour and Jurado (2018). How-

ever, these disturbances carry different economic interpretations and are identi-

fied using different theoretical restrictions. We discuss this issue in more detail

starting in the second paragraph of Section (5) in the paper, and explain why

the unforecastable disturbances are not appropriate for our application.

2. Isn’t the recoverability condition virtually always satisfied when the number of

observables equals the number of disturbances?

It is true that recoverability can often be satisfied even when stronger conditions

like invertibility are not. This is a main advantage of focusing on recoverability;

it expands the set of disturbances for which econometric strategies like VAR

analysis are applicable.

But it is also possible that some observables contain redundant information

relative to the others. We construct such a case in Example 1 of Section (2)

of the paper, but recoverability also fails in some well-known empirical models,

including Barsky and Sims (2012) and Blanchard et al. (2013). This is why it

can be important to check condition in Theorem (1) in practice.

3. If a structural disturbance is recoverable given a certain set of observables ac-

cording to my candidate theoretical model(s), how do I decide which structural

restrictions to impose to identify this disturbance in a VAR analysis?

Knowing that a disturbance is recoverable does not tell us how to recover it. It

just says that, according to the relevant economic theory, the set of observables
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under consideration contain enough information to identify the disturbance. As

in the structural VAR literature that presumes invertibility, selecting the ap-

propriate subset of restrictions to impose is a matter of economic judgment,

which will vary depending on the context. In Section (5) we present a set of

restrictions that can be used in the context of identifying technological distur-

bances in the presence of advance information, even if those disturbances are

non-causal or non-invertible.

4. Can I use Theorem (1) to test recoverability in the data?

No. Like existing tests for invertibility (e.g. Fernández-Villaverde et al., 2007),

recoverability is a property of the disturbances of a structural model and can

only be tested given a (set of) candidate model(s). Articulating the set of

candidate models remains an important, and challenging, step in all structural

VAR analysis.

Tests of theoretical recoverability and invertibility are distinct from empirical

tests of “informational sufficiency” (e.g. Forni and Gambetti, 2014). These

tests ask whether a given set of historical time series span all of the information

actually available to people in the economy. We discuss this distinction in

Section (4), in the paragraph starting with “Third, ...”

5. Are you saying that I always need a fully-specified theoretical model in order to

use techniques like structural VAR analysis?

No. The spirit of our recoverability test, like existing tests of invertibility (e.g.

Fernández-Villaverde et al., 2007), is the spirit of a Monte Carlo test of an

empirical procedure: propose a theoretical data generating process that the re-

searcher believes is representative of actual data, and then use the theoretical

data generating process to examine some property of the empirical procedure.

Much of the VAR literature assumes invertibility without proving that it holds

for any particular data generating processes. The benefit of focusing on recov-

erability, instead of invertibility, is that it expands the set of data generating

processes for which VAR strategies may be valid.

6. Is recoverability a necessary condition for identifying impulse responses or vari-

ance shares?
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No. Recoverability is about determining when the structural disturbances are

identified. Of course, if the disturbances are identified then other objects of

interest like impulse responses and variance shares are also identified; however,

the converse is not true. We discuss this in the last paragraph of Section (4) .

7. Isn’t recoverability unhelpful in situations when we are interested in forecasting

or estimating disturbances that occurred towards the end of the sample period?

Forecasting does not require the identification of structural disturbances; rep-

resentations with reduced-form disturbances (i.e. the Wold representation) are

sufficient.

Regarding estimating disturbances toward the end of the sample, it is possible

for standard errors to be large for disturbances that are identified mainly by

observables at later dates. This is analogous to how standard errors can be

large for disturbances at the beginning of the sample when those disturbances

are identified mainly by observables at earlier dates. Recoverability is about

identification, not about inference. Obviously both are important, but in this

paper we focus on the first.

8. In your empirical application, you assume technology is driven by a single shock.

What happens if technology is driven by several disturbances, and only a subset

of these can be imperfectly observed in advance?

Information structures of the latter sort, sometimes referred to as “noisy-news”,

are observationally equivalent to information structures with a pure “noise rep-

resentation”, in which productivity is driven by a single disturbance and signals

depend on all of the disturbances to productivity. Moreover, the shocks in a

noisy-news information structure are typically not recoverable while the dis-

turbances in a noise representation are. We discuss these issues in Section (5)

of the paper and the representation result is proved in Chahrour and Jurado

(2018).

9. Why don’t the identification restrictions you use in your application fit within

the framework of Lippi and Reichlin (1994)?

Lippi and Reichlin (1994) restrict attention to causal representations, but we

do not. We clarify this the fifth paragraph of the Introduction. One point
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of our paper is to argue that this is not a necessary condition for using VARs.

Our application presents one case in which it would be inappropriate to consider

only causal representations. This identification procedure makes no assumption

about the causality (or not) of the underlying economic model. The fact that we

cannot reject the null hypothesis of non-causality in the empirical application

demonstrates why relaxing this assumption is important.

If only causal structural disturbances are allowed, then it is possible to show that

the vector of reduced-form VAR residuals can always be expressed as a linear

transformation of the structural disturbances, where that linear transformation

can be represented by a Blaschke matrix. However, without imposing causality

this is no longer true. Instead, all that can be said about the transformation is

that it is unitary.

One source of confusion on this point could be a particular statement in Lippi

and Reichlin’s paper. They say: “if ut is orthonormal white noise, then A(L)

is a BM [Blaschke Matrix] if and only if the vector vt = A(L)ut is also an

orthonormal white noise” (p. 311). In order to be true, this claim needs to be

modified; either (i) the “if” part of the “if and only if” statement should be

removed, or (ii) “Blaschke Matrix” should be replaced by “unitary matrix.”

In our view, the specific type of transformation relating structural and reduced-

form disturbances is not economically relevant, and focusing on the class of such

transformations can misleadingly suggest that more economic restrictions are

required. We discuss this in Section (4), in the paragraph starting with “In

addition ...”

10. Instead of using the condition in Theorem (1), can’t I check recoverability by (i)

simulating long samples of data, regressing the realized structural disturbances

on many leads and lags of the observables, and checking whether the residuals are

close to zero? Or, by (ii) using the Kalman smoother to compute the prediction

error variance associated with the smoothed estimate and check whether it is

zero?

Yes, in principle, though these approaches are unlikely to work as well in prac-

tice. The idea behind our proof of Theorem (1) is to perform these exercises in

population for any linear model, and then determine what properties the model
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needs to satisfy for the prediction error to be zero. In practice, however, the

simulation step in procedure (i) involves approximation and therefore introduces

unnecessary numerical error. It is also more time consuming. Procedure (ii)

involves using the Kalman smoother, which is only applicable to models with

a state-space structure; therefore it is less general. It also involves solving a

discrete algebraic riccati equation which introduces additional numerical error.

The condition in Theorem (1) checks recoverability more directly and efficiently

compared to these conceptually correct but more indirect approaches.

11. Regarding your motivating example in Section (3), can’t we always rewrite a

non-causal signal in causal form? For example, if st = ς1ε
a
t+1 + vt couldn’t we

define ε̃at ≡ εat+1 and write st = ς1ε̃
a
t + vt, which is causal with respect to {ε̃at }?

Yes, given a signal structure, we can rewrite it in causal form. But this does

not mean that it is without loss of generality to consider only causal signals.

First, we do not know the signal structure a priori — that is partly what we are

trying to learn from the empirical exercise. Contrary to the example above, we

would not know a priori whether the signal depended only on εat+1, or also on

other elements in the sequence {εat+1, ε
a
t+2, . . . }. The identification restrictions

we propose have the advantage that they do not require this knowledge; we

discuss this in Section (5), in the paragraph starting with “Third, ...”

Second, the interpretation of the disturbances in the causal representation is

different. The transformed disturbances cannot be interpreted as contempora-

neous random changes in technology; in the example above, ε̃at represents the

random change in technology that occurs at time t+ 1. With more complicated

signals, e.g. st = (1 − ρL−1)−1εt + vt, the interpretation becomes complicated

further. Because our purpose in the application is to analyze the effects of phys-

ical technological disturbances, which do not depend on assumptions about the

type of advance information agents might have, causal disturbances like ε̃at are

not appropriate.

12. Since computable numbers are measure zero, isn’t it possible that the numerical

procedure to check recoverability you describe could deliver a“false negative,”

which would lead you to reject recoverability numerically even though the dis-

turbance is actually recoverable?
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Yes, but this is not relevant for practical purposes. By linear regularity, the

value of the expression in Theorem (1) is the same for almost all values of λ on

∆ = [−π, π]. Therefore, the probability of getting a false negative for some value

of λ randomly drawn in this interval is zero. It is true that, strictly speaking,

it is not possible for a computer to draw λ randomly; it can only approximate

a random draw using a pseudo-random number generator. But we should only

worry about false negatives to the extent that we worry about pseudo-random

numbers being poor approximations to truly random numbers.

Furthermore, in the common case that that linear mapping in equation (1) of

the paper has a state space structure we can avoid the issue of random number

generation. This is because the measure zero set ∆∗ ⊂ ∆ on which the value of

the expression in Theorem (1) differs from its value almost everywhere on ∆ is

finite and can be explicitly computed. The condition in Theorem (1) can then

be checked for any value λ ∈ ∆ \∆∗. The following Matlab program computes

the finite set ∆∗ for state-space models . It calls the function tzero.m which is

part of Matlab’s Control System Toolbox.

function [lc] = lamcrit(A,B,C)

% --------------------------------------------------------------------

% Find critical values of lambda for which the expression in Theorem 1

% takes on a different value from its value almost everywhere on

% [-pi,pi], for state-space models of the form: y(t) = A*x(t) and

% x(t) = B*x(t-1) + C*e(t), e(t)~WN(0,I)

% --------------------------------------------------------------------

nx = size(B,1);

ny = size(A,1);

ne = size(C,2);

iz = tzero(eye(nx),C,-A,zeros(ny,ne),B);

tol = 1e-10;

ind = 1;

tz = [];

for i = 1:length(iz)

H = A/(eye(nx)-B.*iz(i))*C;

r = rank(H,tol);
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if r < ne

tz(ind) = iz(i);

ind = ind + 1;

end

end

lc = 1i.*log(tz);

lc = lc(abs(imag(lc))<tol);

end
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