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1 Introduction

The study of exchange rates is suffused with empirical “puzzles” that suggest a discon-

nect between exchange rates and macroeconomic fundamentals. In particular, there is a

surprising lack of connection between a variety of macroeconomic aggregates (output, con-

sumption, etc.) and exchange rates, both contemporaneously and in a forecasting sense – a

set of results the literature broadly refers to as the “exchange rate determination” puzzle.1

Another puzzling pattern is the lack of correlation between current interest rate differentials

and subsequent exchange rate changes, which results in forecastable excess returns and vi-

olations of the Uncovered Interest Parity (UIP) condition.2 A third puzzle emphasizes the

low correlation between real exchange rates and consumption differentials across countries,

which violates the so-called Backus and Smith (1993) risk-sharing condition that appears in

a large class of models. The literature has explored a variety of potential mechanisms that

could be behind these patterns, with an emerging consensus that exchange rates and macro

aggregates are driven by separate sets of shocks. Importantly, this literature and emerging

conclusions are almost entirely based on structural model analysis.

In this paper, we seek to uncover the main drivers of exchange rate fluctuations in the

data in a model-free way. We find that there are two disturbances, both related to ex-

pectations of productivity growth, which account for more than half of real exchange rate

variation. Moreover, the implied conditional exchange rate dynamics exhibit the seminal

failures of risk-sharing and UIP conditions referenced above. And these disturbances also

explain a large portion of fluctuations in macroeconomic quantities such as consumption,

while still implying that the exchange rate appears “disconnected” according to standard

metrics. These two disturbances, which we separately identify, consist of (i) a fundamen-

tal disturbance to technology, which people partially anticipate; and (ii) an expectational

“noise” disturbance, which drives changes in expected technology that never materialize. We

stress that the responses to noise that we recover are consistent with a rational agent who

has access to noisy (but unbiased) information about future, unproven technologies. Overall,

our empirical results suggest that the three major exchanges rate “puzzles” are, to a large

extent, driven by a common mechanism – noisy information about future productivity.

Our analysis proceeds in two steps. First, we seek a purely “agnostic” description of

1See for example Meese and Rogoff (1983) and Engel and West (2005) among others.
2The UIP puzzle has been central to the exchange rate literature since the seminal work of Fama (1984),

see Engel (2014) for an excellent survey.
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the comovement patterns associated with surprise changes in exchange rates. To do this,

we follow the VAR identification procedure of Uhlig (2003), and recover a set of orthogonal

shocks ordered by their respective importance in explaining exchange rate variation. We

find that the “first” shock (i.e. the one most important to exchange rate dynamics) explains

two-thirds of exchange rate variation, and 40% of the variation in macro aggregates. The

shock also generates all three celebrated exchange rate puzzles described above. Our first

key observation is that, while this shock immediately impacts the exchange rate, its effect

on macroeconomic quantities are generally delayed. Thus, it only generates a correlation

between exchange rates and future macro aggregates, but leaves exchange rates effectively

“disconnected” from contemporaneous macroeconomic quantities.

This first step of our analysis intuitively suggests that exchange rates, which are a

forward-looking asset price, are reacting to the arrival of “news” about future fundamentals.

However, this agnostic procedure cannot tell us what, specifically, those news are about.

One obvious hypothesis, that is often emphasized in the broader macro literature, is the

possibility of news about future TFP. To explore this question further, we regress quarterly

exchange rate growth on current, lagged and future TFP growth and indeed find that while

contemporaneous and past TFP growth shows no relationship with exchange rates, TFP

growth four and five years in the future explains roughly one fifth of exchange rate variation.

While this is a remarkable result, given the classic findings of exchange rate “disconnect,”

the exercise itself is quite limited in scope because future realizations are a very imperfect

measure of expected TFP. Realistically, it is unlikely that markets have perfect advance

information – in other words, the world is likely to be characterized by noisy expectations of

future TFP, where some expectations simply do not come true. Think, for example, about the

uncertainty in forecasting the productivity impact of new technologies such as the internet in

the 1990s. Some expectations were eventually disappointed, but the associated (temporary)

optimism — for example regarding pets.com — certainly affected asset prices in the short-

run. In order to examine the hypothesis of noisy TFP expectations, we turn to the structural

identification approach of Chahrour and Jurado (2021), which is specifically designed to

distinguish and separately identify true technological disturbances that eventually change

TFP and disturbances that influence expectations of productivity, but are unrelated to any

eventual change in productivity.

Implementing this approach in our baseline VAR, we find that both of these types of

disturbances, actual TFP changes and “noise” in TFP expectations, play an important role

in driving exchange rates and in generating the three puzzles summarized above. First,
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the two disturbances together account for 64% of the variation in the real exchange rate.

Second, the Impulse Response Functions (IRFs) to both disturbances generate significant

fluctuations in expected currency returns, in line with both the classic UIP puzzle of high

interest rates forecasting domestic currency profits and the newly documented “reversal” in

this forecastability pattern at longer horizons. Both sets of disturbances also cause condi-

tional movements in exchange rates and (delayed) movements in aggregates that generate

the Backus-Smith puzzle, and the exchange rate determination puzzle more broadly.

Importantly, the expectational (“noise”) disturbances we identify are unpredictable ex-

pectational mistakes, and hence are not evidence of a behavioral bias. Moreover, this noise

disturbance is conceptually different from exogenous disturbances in the demand for foreign

currency bonds, which is the typical way the previous literature has modeled “noise” in

exchange rate. Thus, our results show that exchange rates, and three of their major as-

sociated puzzles, are indeed tightly connected to fundamentals, and in particular to noisy

expectations of future productivity.

Thus, our results suggest that the theoretical literature’s traditional focus on building

models of exchange rate puzzles that are driven by TFP shocks is generally warranted.

However, these models are still counter-factual in that they typically assume TFP innovations

are pure surprises, which is in stark contrast with our headline results, which suggests that the

bulk of the exchange rate variation is due to noisy expectations of future TFP innovations.

Hence, our result call for developing new exchange rate models which leverage imperfect

information about future TFP.

Related Literature This paper is related to several different strands of the international

and macro literatures. On the empirical side, we speak to the exchange rate determination

puzzle which refers to the lack of correlation between exchange rates and macroeconomic

fundamentals, both contemporaneously and in terms of forecasting future exchange rates

with current macroeconomic fundamentals (Meese and Rogoff, 1983; Cheung et al., 2005;

Engel and West, 2005). There is also the related observation that the exchange rate is

“excessively” volatile and persistent, as compared to macroeconomic fundamentals – see for

example Obstfeld and Rogoff (2000), Chari et al. (2002), Sarno (2005), Steinsson (2008).

Our finding that there is a connection between exchange rates and macroeconomic fun-

damentals, but one that runs between current exchange rates and future fundamentals, is

the opposite of the forecasting relationship between current and past macro variables and

exchange rates, for which past studies find only weak evidence (Meese and Rogoff, 1983;
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Rogoff and Stavrakeva, 2008). However, it is consistent with previous studies that have

documented that exchange rates Granger-cause macroeconomic quantities to some extent

(Engel and West, 2005; Sarno and Schmeling, 2014).3 Our results contribute to this discus-

sion, by showing that the link between current exchange rates and future fundamentals runs

specifically through imperfect foresight regarding future productivity. The inherent noisiness

of expectations that we uncover can in fact act as an omitted variable in previous empirical

approaches, biasing down their estimates.

A recent related paper is Stavrakeva and Tang (2020), who use survey of expectations to

measure the surprises in macroeconomic announcements. They find that the new informa-

tion about past macroeconomic fundamentals that the market obtains upon a new statistical

release is an important driver of exchange rate fluctuations, and one that is especially impor-

tant for the portion of the exchange rate driven by expected future currency returns. Our

definition of “news” is different, as we specifically identify disturbances to beliefs about fu-

ture US TFP changes (as opposed to revision of beliefs about past endogenous variables such

as output), hence we document the importance of the arrival of information about future

productivity developments is a significant driver of exchange rates and currency returns.

Relative to the papers discussed above, our results also specifically show a link between

the imperfect information about the future and two seminal exchange rate puzzles – the UIP

(Fama, 1984; Engel, 2014) and the Backus-Smith puzzles (Backus and Smith, 1993). Both

puzzles have received extensive theoretical attention, and numerous potential mechanisms

have been proposed as resolution of one or the other.4 Such models, however, have typically

relied on the standard assumption that agents have full information on current and past

innovations to the exogenous shocks driving the economy, but no information on their future

innovations. As a result, while the models are consistent with the pricing puzzles, they often

run counter to the exchange rate “disconnect,” since shocks drive contemporaneous changes

in both exchange rates and other macroeconomic quantities.

To confront this challenge, a new strand of the literature has emerged that has analyzed

mechanisms that can generate the exchange rate pricing puzzles based on exchange-rate-

3Lilley et al. (2020) find a contemporaneous connection between US purchases of foreign bonds and the
dollar, but only in the post-2009 period. Such contemporaneous relationships have proven elusive over a
longer time span.

4For example, time-varying risk (Alvarez et al., 2009; Verdelhan, 2010; Bansal and Shaliastovich, 2012;
Farhi and Gabaix, 2015; Gabaix and Maggiori, 2015), non-rational expectations (Gourinchas and Tornell,
2004; Burnside et al., 2011; Ilut, 2012; Candian and De Leo, 2021) and liquidity premia (Valchev, 2020) have
been proposed as explanations of the UIP Puzzle. On the other hand, Corsetti et al. (2010), Colacito and
Croce (2013), and Karabarbounis (2014) develop models that explain the Backus-Smith puzzle.
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market specific “noise trader” shocks that have only a muted effect on the broader macroe-

conomy (Eichenbaum et al., 2020; Itskhoki and Mukhin, 2021). This is a new and more

elaborate take on the older idea that, given the exchange rate disconnect fact, UIP-specific

or FX-risk shocks are a convenient and powerful way of generating empirically realistic ex-

change rate dynamics (Devereux and Engel, 2002; Jeanne and Rose, 2002; Kollmann, 2005;

Bacchetta and van Wincoop, 2006; Farhi and Werning, 2012).5 In particular, Itskhoki and

Mukhin (2021) show such FX-noise shocks can generate not only the UIP puzzle, but also

the general disconnect and the Backus-Smith puzzle.

Relative to this recent literature emphasizing the role of shocks to noise-trader FX-

demand, our empirical results suggest that another promising avenue is to examine models

with imperfect information about future productivity. While both paradigms feature a notion

of “noise”, the two are conceptually different. In the existing literature, the “noise shock”

is an exogenous shift in the demand for one currency relative to another, with no structural

interpretation or connection to macroeconomic fundamentals. Our results, instead, provide

evidence of a disturbance that creates noise in the expectations of future fundamentals.

Hence, while our notion of noise is also orthogonal to fundamentals, agents do not know this

in real time and react to it as if it carries information about future productivity. In that

sense, it is both a disturbance about fundamentals, and one that is perceived as such by the

agents.

Overall, our results suggest a mechanism that provides a comprehensive explanation of

empirical exchange rate dynamics should be able to generate all major exchange rate puzzles

conditional on the same disturbances related to imperfect foresight of future productivity.

Models that can generate multiple exchange rate puzzles out of TFP disturbances are rare –

one such model (albeit without pure anticipation effects of future productivity) is Colacito

and Croce (2013). Nevertheless, that model also cannot generate the reversal of UIP at longer

horizons and the associated “excess volatility” of the exchange rate, and is also implying a

conditional relationship between consumption and TFP that is the opposite of what we find

in the data. Still, as we discuss in the paper, modifying this long-run risk paradigm to take

into account our rich empirical results seems like a promising way forward.

Lastly, there is a small but growing literature specifically documenting the effects of

“news shocks” in the international data and developing international RBC models driven

in part by news shocks. That literature, however, has typically focused on the question

5Relatedly, Huo et al. (2020) find that international comovement between macro aggregates is also likely
explained by non-fundamental shocks, though they do not speak to correlation with exchange rates
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of comovement between macro aggregates across countries, and not on exchange rate dy-

namics and related puzzles. In that vein, Siena (2015) argues that news shocks only lead

to a small amount of comovement between macro aggregates across countries, contrary to

previous evidence by Beaudry and Portier (2014). Perhaps most closely related to us is the

work of Nam and Wang (2015), who use a Barsky and Sims (2011) approach to identifying

news-to-TFP shocks, and find that they are indeed an important driver of exchange rates

in the data. In contrast to us, however, they do not consider the effect of the shocks on

exchange rate puzzles and also do not separately identify the effects of fundamental distur-

bances from those driven by expectations disturbances that are orthogonal to fundamentals.

Moreover, their news identification procedure is less general and can only detect news about

idiosyncratic movements in US and foreign TFP, while our results speak to both global and

local shocks. Lastly, Gornemann et al. (2020) develop an international model of endogenous

TFP growth, and show that it can account very well for the low frequency movements in real

exchange rates, which speaks, in another way, to the importance of predictable TFP growth

to exchange rate volatility and persistence.

2 Initial Empirical Analysis

We begin with an empirical exercise that aims to uncover the basic statistical properties of the

main empirical driver of exchange rate fluctuations, while keeping structural identification

restrictions to a minimum. To do so, we follow the approach in Uhlig (2003), which was

also recently used by Angeletos et al. (2020) to identify what they call the “main business

cycle” shock. In parallel to the Angeletos et al. (2020) terminology, we will call the shock

we identify here the “main exchange rate” shock.

Specifically, we start by estimating the VAR

Yt = C(L)Yt−1 + ut (1)

where the vector Yt contains data on the US and a trade-weighted aggregate for the other

G6 countries. The endogenous variables are (i) the nominal exchange rate St expressed in

units USD per foreign currency, (ii) the Fernald series on US-TFP cleaned out of endoge-

nous components like utilization, (iii) US real consumption and investment, (iv) foreign real

consumption and investment, (v) the interest rate differential, (vi) and the CPI price level
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differential vis-a-vis the US:

Y ′t ≡
[
ln (St) , ln

(
TFPUS

t

)
, ln
(
CUS
t

)
, ln (C∗t ) , ln

(
IUSt
)
, ln (I∗t ) , ln

(
1 + iUSt
1 + i∗t

)
, ln

(
CPIUSt
CPI∗t

)]
For our benchmark results, we use quarterly data for the time period 1976:Q1-2008:Q2

for the G7 countries. The sample stops in 2008 to guard against a possible structural break

in the aftermath of the financial crisis, as argued by Baillie and Cho (2014) and Du et al.

(2018). As robustness, we also consider estimates on the longest sample we have data for

– 1976:Q1-2018:Q4 – and the results remain very similar. Those robustness results can be

found in the Appendix.

The exchange rate is the average of the daily exchange rates within a quarter, obtained

from Datastream. The interest rate differential is similarly the quarterly average of daily

Eurodollar rates obtained from Datastream (note, these are not forward discount-implied

interest rate differentials, but actual eurodollar rates). The CPI indices and the consumption

and investment series are from the OECD database. Latly, the US TFP is from John

Fernald’s website.

The foreign variables in Yt are trade-weighted G6 averages, e.g. the exchange rate is the

trade-weighted exchange rate of the US vis-a-vis the other G6 countries, C∗t is the trade-

weighted consumption of the other G6 countries, and etc.6 In the Appendix we also report

separate estimation results for bilateral VARs between the US and each of the other six G7

countries, and the outcome remains the same. We use the G6 average as a convenient way to

summarize the results, but note that the relationships we identify here are consistent across

the cross-section of individual countries.

We include four lags, and estimate the VAR via Bayesian methods using Minnesota

priors. Following the established convention (e.g. Sims et al. (1990), Eichenbaum and

Evans (1995)), we estimate the VAR in levels and do not impose ex-ante that there are

any specific cointegration relationships, but as robustness checks in the Appendix we also

show that results remain unchanged if we instead estimate a VECM model and impose the

same cointegrating relationships as Engel (2016) (who assumes the real exchange rate and

interest rate differential are stationary). Alternative cointegration relationships and VECM

specifications make little difference as well.

As is standard in VAR analyses, any “shocks” estimated by our analysis are a linear

combination of the VAR innovations ut. But instead of picking a linear combination based on

6We use the trade-weights as in Engel (2016).
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some “ordering” of the sequence in which shocks affect variables (e.g. Cholesky identification)

or sign restrictions, we follow Uhlig (2003) and look for the linear combination that has the

highest explanatory power for the fluctuations in the real exchange rate. The (log) real

exchange rate qt, defined as usual to be the log ratio of the nominal exchange rate and CPI

differentials

qt = st + p∗t − pt,

And while it is not included in the VAR ex-ante, it is a linear combination of the variables

in our VAR, hence it is straightforward to apply the Uhlig (2003) procedure as follows.

Denote by Yt = B(L)ut the reduced-form moving average representation of the VAR in

equation (1). Let the relationship between reduced-form innovations and structural shocks

be given by

ut = A0εt, (2)

which implies the following structural moving average representation:

Yt = B(L)A0εt. (3)

We assume that the structural shocks are orthogonal with unitary variance. Therefore, the

impact matrix A0 has to satisfy the condition A0A
′
0 = Σ, where Σ = V ar(ut) is the variance-

covariance matrix of innovations. This restriction is not sufficient to identify the matrix A0.

In fact, for any matrix A0 there exists an alternative matrix Ã0 such that Ã0D = A0, where

D is an orthonormal matrix, thus Ã0 also satisfies Ã0Ã0
′

= Σ. Therefore, fixing a matrix

Ã0 satisfying Ã0Ã0
′

= Σ (e.g., the Cholesky decomposition of Σ is a convenient choice),

identification boils down to choosing an orthonormal matrix D.

Denote the h-step ahead forecast error of the i-th variable yi,t in Yt by

yi,t+h − Et−1yi,t+h = e′i

[
h−1∑
τ=0

Bτ Ã0Dεt+h−τ

]
where ei is a column vector with 1 in the i-th position and zeros elsewhere, and Bτ is the

matrix of moving average coefficients at horizon τ .

The Uhlig (2003) approach consists of finding the column of D that isolates the shock
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explaining most of the forecast error variance of a specific variable yi. Formally, we solve

d∗1 = argmax
d1

e′i

[
H−1∑
τ=0

Bτ Ã0d1d
′
1Ã
′
0B
′
τ

]
ei (4)

subject to d′1d1 = 1, where d1 is the first column of D. The problem is analogous to find the

eigenvector associated with the largest eigenvalue of the appropriately rearranged objective

function. As mentioned above, the variable over which we want to maximize explanatory

power is the real exchange rate qt, hence the selector vector is ei = [1, 0, 0, 0, 0, 0, 0,−1]. The

procedure involves a choice of forecast horizon H, which we set to 100 to effectively capture

the unconditional variance of the real exchange rate.

Overall, this procedure is agnostic to the structural interpretation of the extracted

“shock”, however the results are still quite informative about the basic structure of dynamic

comovements that are associated with surprise changes in the exchange rate.

Extracting this “main exchange rate shock” ε1,t, as defined by d∗1 in equation (4) above,

we find that it is indeed very important for exchange rate fluctuations as it explains roughly

70% of variance of the real exchange rate. This large share attributable to just one inno-

vation means that the data implies there is a large degree of commonality in the dynamic

patterns that emerge following a surprise change in the real exchange rate. Most interest-

ingly, we also find that this shock explains a significant portion of the variation of the main

macro aggregates included in our VAR – specifically it also accounts for around 40% of the

forecast error variance at a horizon of 100 quarters, V ar(xt+100 − Et(xt)), of consumption

and investment (both home and foreign), and US TFP. For the macro aggregates we turn

to a decomposition of the FEV, because they are non-stationary, but we choose a very large

horizon to effectively capture both short, medium and long-run fluctuations. In terms of

the real exchange rate, the FEV decomposition at 100-quarters is identical to that emerging

from the decomposition of the unconditional variance.

The fact that the main exchange rate shock drives a significant amount of the varia-

tion in both exchange rates and macro aggregates is, at first blush, surprising given the

well-established result that exhange rates appear to be largely disconnected from macro fun-

damentals (e.g. Engel, 1999 and Engel and West, 2005). Our results (and dataset), are in

fact consitent with these previous results, and the reason is that there is a difference in the

timing of the response of exchange rates and the macro aggregates to the shock we extract,

with the exchange rate responding significantly on impact, while aggregate quantities only

react with a lag. In contrast, the seminal results on exchange rate disconnect largely focus
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on the contemporaneous unconditional correlation between exchange rates and macro aggre-

gates. Our results, instead, indicate that there is indeed a common driver behind exchange

rates and macro aggregates (and thus a fundamental connection between the two), but the

effects materialize at different horizons in exchange rates and macro quantities, respectively.

To showcase this, in Figure 1, we plot the impulse response functions of several variables

of interest from our VAR to this “main exchange rate shock” (MFX). The median impulse

response is plotted with a solid blue line, and the shaded areas around it are the 16-84th

percentile and the 10-90th percentile bands respectively.

A number of notable results emerge. First, the real exchange rate shows a significant

response on impact, appreciating by about 2.5% after a one standard deviation increase

in the MFX shock. The exchange rate response also displays the characteristic “delayed”

overshooting dynamics, where it continues to appreciate for another 5 quarters after the

shock, peaking at a maximum appreciation of about 3.5%, and thereafter the exchange rate

steadily depreciates back to its long-run mean. The non-monotonic dynamics we recover are

similar to the ones previously emphasized by Eichenbaum and Evans (1995) and Steinsson

(2008), and this results in a dynamic response that is very persistent – with a half life of

three to three-and-a-half years – in line with the “excess persistence” puzzle documented by

previous studies.

Importantly, these exchange rate patterns of initial appreciation, and then strong de-

preciation, are also underlying a “reversing” or “cyclical” pattern in the deviations from

uncovered interest parity. Specifically, the MFX shock causes non-monotonic movements

in the expected excess currency return, defined as usual as Et(λt+1) ≡ Et(∆qt+1 + r∗t − rt),

with the expectation as implied by our VAR estimates. We plot the IRF of Et(λt+1) in the

bottom left panel of Figure 1, and we see that it is negative on impact and remains so up to

six quarters after the shock, and then turns significantly positive and remains so for several

years afterwards. Such predictable variation in the expected excess returns is a violation of

the uncovered interest parity (UIP) condition.

Note also that the MFX shock leads to a monotonic impulse response in the interest rate

differential, which increases on impact and gradually returns to its long-run mean. As a

result, in the immediate aftermath of the shock, the exchange rate response is displaying the

classic version of the UIP puzzle where the high interest rate currency (the USD) is earning

high returns, while in the medium run the direction of the UIP violation reverses, with the

dollar earning low returns for an extended period of time. Thus, the MFX shock generates

exchange rate dynamics that are consistent with the reversal of UIP violations at longer

10



Figure 1: Impulse Response Functions to the Main FX shock (ε1)

Notes: The figure reports the impulse responses to the main FX shock, along with the 16-84th (dark gray)
and 10-90th (light gray) percentile bands. Each period is a quarter.
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horizons documented by previous studies like Engel (2016) and Valchev (2020).

Overall, the results suggest that our empirical procedure is indeed picking up not just a

shock that is responsible for a large fraction of exchange rate fluctuations, but also generates

several important and familiar exchange rate “puzzles”.

Turning to the responses of macro aggregates, the MFX shock we identify induces no

short-run movements in consumption; home consumption only responds in statistically sig-

nificant terms to the shock after a couple of years, and foreign consumption does not exhibit

a significant response until five years after the shock. The effect on home consumption peaks

at around 22 quarters after the shock, while foreign consumption’s response peaks at around

30 quarters after the shock. The peak in home consumption is also about double the size of

the peak effect on foreign consumption, with home consumption peaking at an increase of

about 0.8%, while foreign consumption peaks at 0.5%.

The impulse response of TFP shows a similar delay, with the shock having an insignificant

impact on productivity up to 5 quarters in the future, and productivity eventually displaying

a significant and prolonged increase at longer horizons, with the effect peaking at 0.4% at

about 20 quarters after the shock. Thus, overall, both consumption and TFP display a

significant response in the medium-to-long run, but no response in the immediate aftermath

of the shock. The lack of a short-run response in these core macro series, in contrast to

the large immediate response in the exchange rate, imply an apparent contemporaneous

disconnect between exchange rates and macro aggregates. This is consistent with the notion

of disconnect emphasized in the previous literature, but we want to emphasize that our

results suggest the disconnect is just one of timing – the exchange rate is indeed significantly

related to future macro aggregates.

The response of the TFP series is reminiscent of a “news” shock, as it implies that the

eventual increase is essentially predictable at time t. Given such anticipation, standard

models would imply that home investment should increase immediately — and indeed, this

is precisely what we observe in the impulse response of home investment. Similarly, foreign

investment only rises with a significant delay, which is also consistent with the notion of a

news shock, as standard models would imply that in the short run capital is shifted towards

the economy with higher anticipated productivity growth.

To showcase the differences in the timing of effects in the different series in an alternative

way, in Table 1 columns 2 through 6, we compute the share of the h-step ahead forecast error

variance of a given variable that is explained by the main exchange rate shock for different

horizons h, starting from 1 quarter and going up to 100 quarters. As can be expected given
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Table 1: Share of forecast error variance explained by the Main FX shock (ε1)

Q1 ∆ Q4 ∆ Q12 ∆ Q24 ∆ Q40 ∆ Q100 ∆

Home TFP 0.03 0.06 0.20 0.37 0.45 0.43

Home Consumption 0.02 0.04 0.21 0.47 0.51 0.40

Foreign Consumption 0.01 0.04 0.06 0.21 0.36 0.30

Home Investment 0.29 0.34 0.32 0.40 0.42 0.41

Foreign Investment 0.06 0.08 0.15 0.22 0.34 0.33

Interest Rate Differential 0.40 0.39 0.30 0.34 0.35 0.39

Real Exchange Rate 0.50 0.69 0.82 0.73 0.70 0.68

Expected Excess Returns 0.47 0.33 0.34 0.44 0.45 0.47

∆qt 0.50 0.49 0.47 0.49 0.49 0.51

Notes: The table reports the estimated variance shares accounted for by the main exchange rate shock, both
unconditionally (at periodicities between 2 and 100 quarters) and at different horizons.

the shape of the IRFs in Figure 1, while this shock is equally important for both short-run

and long-run exchange rate fluctuations, it only explains 2% and 1%, respectively, of the

one-quarter-ahead forecast error variance of US and G6 consumption. At the same time, the

MFX shock explains more than 20% of the forecast error at horizons bigger than 3 years for

home consumption, and a similar fraction of foreign consumption at longer horizons. And,

overall, the MFX explains more than 40% of the FEV a long horizons in both consumption

series.

Takeaways

Taken together, this evidence sheds important light on the “exchange rate disconnect

puzzle,” as broadly construed. First, bulk of the variation in the real exchange rate (68%

of the total) is essentially not related contemporaneously to aggregate consumption or TFP,

but rather the exchange rate leads these two macro aggregates that the prior literature has

often tried to connect to the exchange rate. Thus, our results suggest that the canonical

finding of a “disconnect” does not emerge because of a genuine separation between FX and

fundamentals, but rather because of a difference in the timing of the responses of exchange

rates and macro aggregates to the same macroeconomic surprise(s).

Second, in addition this basic disconnect puzzle, the dynamic responses to the MFX shock

display a number of other famous and well-established exchange rate puzzles. On the one

hand, we have already discussed the high persistence of the real exchange rate implied by the
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IRFs, and also how the short-run and long-run patterns of UIP violations conditional on the

shock correspond to previous, unconditional results. On the other hand, IRFs in Figure 1

also exhibit the classic violation of the Backus et al. (1993) condition that corr(qt, ct−c∗t ) = 1.

In contrast to this risk-sharing condition, conditional on the MFX shock the exchange rate

appreciates, and rather than falling, the consumption differential also rises above its mean.

Thus, the MFX generates not only a lack of contemporaneous correlation between exchange

rates and macro aggregates, but it specifically generates exchange rate dynamics that violate

a number of standard model-implied conditions.

Third, the dynamic response patterns are consistent with the hypothesis that the MFX

is capturing (or at least heavily loading on) the classic notion of a news shock about US

TFP. The reason is that macroeconomic quantities such as consumption and TFP itself only

rise with a significant delay. However, strongly forward-looking variables such as asset prices

(like the exchange rate and the interest rates), and also physical investment, jump on impact,

seemingly in anticipation of the increase in TFP.

3 Expectations of Future TFP and Exchange Rates

Our results so far indicate that anticipation of future TFP might hold the key to a funda-

mental connection between exchange rates and macro aggregates, while at the same time

generating many of the classic exchange rate puzzles. This is an interesting hypothesis, espe-

cially given the emerging consensus in the literature that the plethora of puzzles in exchange

rate behavior are generated by financial or risk shocks that are unrelated to macrofunda-

mentals. However, our results so far are only suggestive, as the MFX shock has no direct

structural interpretation. So, next we turn to directly testing the hypothesis that distur-

bances to anticipated TFP are indeed affecting the exchange rate.

Anticipated TFP has a rich modeling tradition in macroeconomics, both on the theory

side and in the data, and previous empirical studies have suggested that news or anticipation

about TFP potentially plays an important role in business cycle fluctuations of the main

macro aggregates (e.g. Beaudry and Portier, 2006 and Chahrour and Jurado, 2021). But the

empirical content of TFP expectations vis-a-vis exchange rates is less explored. The only

paper we are aware of studying the impact of such news shocks on the real exchange rate

is Nam and Wang (2015), and in their study they completely abstract from the potential

impact of the shocks they identify on exchange rate puzzles such as UIP deviations. However,

whether or not news shocks are behind the famous exchange rate puzzles is crucial to know
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for informing theoretical models.

Let us spell out our null hypothesis. It is well understood in the literature that exchange

rates are asset prices, and are thus forward looking. As such, they can be expressed as the

sum of future expected interest rate differentials and excess returns (e.g. Engel (2016)):

qt = −
∞∑
k=0

Et(rt+k − r∗t+k) −
∞∑
k=0

Et(λt+k+1)

To the extent that agents’ expectations about future interest rates and risk-premia are

associated with agents’ expectations of future TFP, we would expect that shocks to TFP

expectations will also materially (and immediately) impact the exchange rate.

As a first step in evaluating this hypothesis, we consider a simple exercise, where we

regress the change in the real exchange rate at time t on leads and lags of the change in

TFP. To save on degrees of freedom, we aggregate the leads and lags into annual TFP

changes:

∆qt = α+ β0∆TFPt +

h∑
k=1

βlag−k (TFPt−4(k−1) − TFPt−4k) +

h∑
k=1

βleadk (TFPt+4k − TFPt+4(k−1)) + εt

(5)

Thus, if we include just the first two terms, we have a regression estimating the standard

relationship between contemporaneous changes in the exchange rate and TFP, which we

know from previous research is virtually nil. If we include the first summation term, then we

also consider the additional (potential) explanatory power of lagged changes in TFP of up

to h-years in the past. Lastly, once we include the second summation term, we also consider

a potential correlation with future TFP changes, of up to h-years forward. The coefficients

βleadk might be non-zero if the marginal foreign exchange investor has some information on

likely future developments to TFP (e.g. some advance notice of the likely productivity of

new technologies).

In Figure 2 we report the resulting R2 of two versions of the above regression – a “Re-

stricted” backward-looking version that only includes current and lagged TFP growth terms

and an “Unrestricted” version that includes all terms on the right-hand side. The first version

captures the typical direction of the relationship between TFP and exchange rates that the

previous literature has focused on, and its resulting R2 (and its associated 90% confidence

interval) are plotted with the red line and bands. The R2 of this purely backward looking

regression is statistically insignificant no matter how many lags of TFP growth we include,

embodying the typical “disconnect” result.
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Figure 2: RER growth and leads and lags of TFP growth
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Notes: The figure reports the R2 of a regression of exchange rate changes on present and past TFP (Re-
stricted), and the R2 of a regression of exchange rate changes on present, past and future TFP (Unrestricted),
depending on the number of lead/lags included in regression equation (5).

On the other hand, the result changes substantially once we also include terms capturing

future TFP growth – the resulting R2 of this “Unrestricted” regression is plotted with the

blue line. The relationship between FX and TFP growth is similarly insignificant if we only

include TFP growth of up to 2 years in the future, but becomes increasingly significant

as we include TFP growth 3 to 5 years out. Thus, the evidence speaks to the fact that

exchange rates contain a substantial amount of information about future TFP growth in the

medium-run to long-run.

While suggestive, this exercise has limited power to capture the full extent of the effects

of TFP expectations, because realized values of future TFP are likely imperfect proxies for

investors’ actual expectations of future TFP. That is, expectations are likely to be noisy,

in the sense that sometimes they are overly optimistic, and other times they are overly

pessimistic. However, investors cannot know in real time what part of their expectation is a

forecast error, and which part is correctly anticipating actual future changes in TFP.

As such, the noise in expectations acts as an omitted variable bias in the above regression.

That is expectations often vary over time, even when there are no actual fundamental changes

in the future, purely due to the inherent noisiness of forecasting the future. This variation in
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expectations, however, is by definition orthogonal to actual future productivity changes and

hence is missing from the regression. Intuitively, we would expect that correcting for this

bias could uncover an even stronger link between TFP expectations and current exchange

rates. Think, for example, about the uncertainty in forecasting the productivity impact

of new technologies such as the internet in the 1990s. Some expectations were eventually

disappointed, but the associated (temporary) optimism — for example regarding pets.com

— certainly affected asset prices in the short-run.

One indication that noise in expectations might be playing an important role is that the

maximal R2 we achieve in regression (5) is in the neighborhood of 0.2, while the MFX shock

explains 55% of V ar(∆qt) as per Table 1. Would accounting for the expectational noise

bring us closer?

In order to separately identify and account for the “noise” in expectations, we follow

the recently developed VAR-identification approach of Chahrour and Jurado (2021). This

approach is specifically designed to independently identify the “fundamental” disturbances

driving realized changes in productivity and expectational “noise” disturbances, which drive

changes in productivity forecasts that are never realized. It is important to realize from the

onset that responses to “noise” recovered this way are not indicators of a predictable bias

in expectations, but the consequences of errors made under rational expectations. Thus,

our eventual finding of a significant identified noise component in expectations is evidence

of imperfect forward information, information that rational agents should respond to in real

time even though they may later learn that some of that information was incorrect.

In contrast, other “news shock” identification schemes, such as Barsky and Sims (2011),

do not separately identify the noise component of expectations. Moreover, Chahrour and

Jurado (2021) avoids the assumption that the underlying structural data generating process

has an invertible representation, which is often violated in models of economic foresight

(Blanchard et al., 2013). Finally, as we discuss below, this procedure allows for an arbitrary

structure for the fundamental process and a very general signal thereof, so that we need

make essentially no assumptions about what aspects of productivity people learn about, or

when they do so.7

To fix ideas, we present a simplified discussion of the Chahrour and Jurado (2021) pro-

cedure here. The null hypothesis is that agents in the economy have advance information

about future TFP as summarized by a general noisy signal ηt, which can be represented as

7From a broad perspective, the results are qualitatively similar when following a Barsky and Sims (2011)
procedure.
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a linear combination of future innovations to TFP plus an orthogonal noise component vt:

ηt =
∞∑
k=1

ζkε
a
t+k + vt,

where εat+k are the Wold representation innovations to the TFP process at:

at = A(L)εat . (6)

Further assumptions on the particular structure of the TFP process or on the coefficients

ζk are not necessary. Moreover, the noise component of the signal is also very general, and

allowed to have an arbitrary lag structure:

vt =
∞∑
k=1

νkε
v
t−k.

The assumptions of the Chahrour and Jurado (2021) procedure are that (i) the produc-

tivity disturbances εat are exogenous (orthogonal to other structural shocks) and (ii) the

signal-noise innovations εvt are orthogonal to TFP at all leads and lags. To get some intu-

ition, consider a two-variable VAR in just [at, ηt]. In this case, the restrictions we impose

amount to placing zeros in the MA representation of the data in the following way: at

ηt

 = · · · +

 0 0

∗ 0

 εat+1

εvt+1

+

 ∗ 0

∗ ∗

 εat

εvt

+

 ∗ 0

∗ ∗

 εat−1

εvt−1

+ · · ·

In words, we are assuming the productivity disturbances are equivalent to the “shocks” in

its univariate Wold representation, and only affect productivity once they realize – i.e. at is

a function of the history of εat up to and including time t. In addition, we assume the signal

ηt contains information about future productivity disturbances, εat+k, while the signal noise

disturbances εvt are orthogonal to productivity at all leads and lags. This gives us enough

restrictions to uniquely identify the two shocks εat and εvt .

Intuitively, the VAR-forecast Et(at+k) is a function of both the history of TFP at, because

it is a persistent process, and also the signals ηt because they contain advance information

of future TFP innovations. In turn, we decompose the VAR-implied forecast Et(at+k) into a

component that is correlated with εat+k, thus giving us the component of expectations that

is “correct”, and a component that is orthogonal to this future TFP innovation, and thus is
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driven by the noise terms εvt – i.e. the expectational error.

This strategy thus allows us to estimate the separate impulse responses of any variable of

interest to both the fundamental disturbances, εat+k, and the “noise” component of expecta-

tions, vt. By examining the responses of economic variables, like the exchange rate, qt, to the

“fundamental” disturbance εat+k, we can therefore see an indication of whether (and how)

fundamental disturbances are anticipated. By examining responses to the second type of

disturbance, εvt we learn how much of economic fluctuations are associated with movements

in expectations that are completely orthogonal to productivity – e.g. misplaced optimism

or pessimism (but again in the form of a rational mistake, not a behavioral bias).

The above illustrative example assumed we observe the relevant signal ηt, but in practice,

our implementation simply assumes that the TFP forecast of our baseline VAR in equation

(1) contains sufficient forward-looking variables to span the economy’s information of future

TFP innovations. Thus, the implicit assumption here is that the endogenous variables we

include (exchange rate, interest rates, consumption, investment and price levels) incorporate

the marginal agent’s beliefs about future TFP, and thus correctly captures the expectation

Et(at+k). In multivariate settings, we also need to specify a target “horizon” of expectations,

for which we decompose the corresponding Et(at+h) into a component related to εat+h and

one related to εvt . We choose h = 20 to match the peak in the TFP IRF in Figure 1.8

Under these auxiliary assumptions, we can identify the fundamental and noise distur-

bances without making further assumptions about the information structure in the econ-

omy, and expectations of any variables in the system can be backed-out using the dynamics

implied by the VAR.

3.1 Conditional dynamics

We begin by plotting the estimated impulse responses of TFP (at) and the 20-quarter

ahead expectation of TFP (Et(at+20)), in respect to the fundamental technological distur-

bance εat in Figures 3 and to the expectational noise disturbance εvt in Figure 4. These

would be informative about the basic structure of the information set and agent’s ability to

anticipate TFP that we estimate.

Since anticipated productivity shocks can influence endogenous variables before the actual

change in productivity, we plot each figure from 20 quarters before the respective innovation

(either εat or εvt ) realizes. The extent to which TFP anticipation plays a role in the data can be

8If agents only observe one signal about future TFP, then this horizon is irrelevant, as any choice of h
will yield identical estimation results. In practice, we find it does not matter much for our findings.

19



Figure 3: Impulse responses to Technology (εa) disturbances

Notes: The figure displays IRFs to a one standard deviation impulse in the technological disturbance at
time t = 0. The shaded area are the 16-84th (dark gray) and 10-90th (light gray) percentile bands. Each
period is a quarter.

evaluated by seeing whether the estimated IRFs respond significantly to εat before its actual

realization. In our figure, we plot the X-axis in terms of the quarters before and after the

realization of the TFP increase, with 0 denoting the period of realization. Hence, anticipation

effects are equivalent to statistically significant IRFs in periods between −20 and −1. Lastly,

we stress that whether or not the endogenous variables respond before productivity actually

moves is not assumed but estimated. If the estimates show no significant early response of

these variables, this would constitute evidence against the hypothesis of expectational effects

of productivity.

Consider the response of TFP (at) to a εat shock, plotted in the left panel of Figure 3.

Naturally, the level of TFP does not change until the innovation εa0 is actually realized (at

time 0), and then TFP exhibits fairly persistent, dynamics while returning to its long-run

mean.

On the other hand, in the right panel we plot the impulse response of the expectation of

TFP 20-quarters ahead, Et(at+20), and we see that this variable is significantly higher than

its long-run mean even a full 20 quarters before the innovation actually realizes, manifesting

a significant amount of anticipation. Specifically, 20-quarters before the actual 1-standard

deviation TFP improvement, which is roughly 0.6%, agents expect that quarter’s TFP to

be roughly 0.2% higher than average. Thus, TFP expectations anticipate about one third

of the actual improvement in TFP a full 20-quarters ahead of time. We can also see that

the expectation is not perfect, of course, by the fact that the impulse response of Et(at+20)

jumps at time 0, indicating that the actual realization still surprised the agents, and led to
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Figure 4: Impulse responses to Noise (εv) disturbances

Notes: The figure displays IRFs to a one standard deviation impulse in the expectational disturbance at
time t = 0. The shaded area are the 16-84th (dark gray) and 10-90th (light gray) percentile bands. Each
period is a quarter.

adjusting expectations upward upon observing the actual εat innovation.

Another way to see that expectations are imperfect, is by considering the impulse response

to the pure expectational noise disturbance εvt , which we plot in Figure 4. In the left panel,

we essentially see one of our identification restrictions at play – the expectational noise

disturbance has no effect on TFP at any leads or lags. On the other hand, in the right panel

we see that the expectational noise shock indeed moves expectations, where a one standard

deviation positive εv0 (so an “optimistic” shock), leads to a 0.5% increase in expected TFP

20-quarters out. This impulse response then converges back down to its long-run mean,

which signifies that agents learn, over time, that their initial optimism was misplaced.

Thus, taking the results in Figure 3 and Figure 4 together, we conclude that our estimates

indeed strongly support a noisy-information paradigm, where agents do have some advance

information and thus partially anticipate future movements in TFP, yet that information is

noisy hence expectations sometimes move even though there is no actual future increase in

productivity.

Now let us turn to the impact of these two types of disturbances on the rest of the

endogenous variables in our VAR, with a special attention played to the response of the

exchange rate. In Figure 5 we plot the responses to a TFP innovation εat , for the interest

rate differential, home consumption, the real exchange rate, foreign consumption and the

expected currency returns (Et(λt+1), with the expectation based on the estimated VAR),

together with the response of the TFP level again for reference.

We focus on the real exchange rate first, which is presented in the middle row, right panel.
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The response exhibits a pronounced V-shape, which peaks right around the time at which

the TFP innovation actually realizes. That is to say, the real exchange rate significantly

appreciates before the actual TFP improvement, showcasing that the TFP anticipation effects

we estimated above are indeed priced into the exchange rate. The maximum appreciation

of about 2% occurs right around period-0, and the exchange rate then steadily depreciates

after TFP improves. Tentatively, this suggests a mechanism where the higher expected US

productivity generates a boom in US consumption, driving the relative price of US goods

higher, which price appreciation is then reversed once productivity actually improves, and

the resource constraint of the economy is loosened.

This basic hypothesis is consistent with the responses of the interest rate differential and

relative consumption as well. The 3-month dollar interest rate increases before the TFP

innovation, peaking at around 7.5 basis points higher than its long-run mean (or 0.3% at an

annualized basis), which could signify increased borrowing desire in the US in the face of

higher expected permanent income. The interest rate differential then steadily depreciates

after the TFP innovation materializes, and is in fact significantly lower than its mean for

a prolonged period of time between 10 and 20 quarters after the TFP improvement. Sim-

ilarly, there is a US consumption boom before the TFP improvement, and while foreign

consumption also increases, the consumption differential is still large and positive (not pic-

tured). Thus, indeed there is a US consumption boom even relative to foreign consumption

in anticipation of the US productivity gain.

In Figure 6 we present the impulse responses of the same set of variables, but in response

to an expectational noise shock εvt instead. Starting with the exchange rate again, we see

that upon the improvement in expectations (recall that is period 0 on the X-axis), the real

exchange rate strongly appreciates. This is consistent with the message from Figure 5, where

we saw that the exchange rate appreciates significantly before an actual improvement of TFP,

speaking of apparent anticipation effects. We capture those here directly.

The exchange rate response is also fairly persistent, with the exchange rate returning to

its long-run mean only after about 12 quarters. The interest rate differential is also consistent

with the previous figure, increasing on impact of the optimistic shift in expectations, and

then declining.

The response in consumption is more gradual and delayed, but there is indeed again

a US consumption boom following an increase in expected future US TFP. The fact that

the boom is a little bit delayed suggests that the underlying information structure is one of

low frequency news. That is, our findings indicate that the underlying signals that agents

22



Figure 5: Impulse responses to Technology (εa) disturbances

Notes: The figure displays IRFs to a one standard deviation impulse in the technological disturbance at
time t = 0. The shaded area are the 16-84th (dark gray) and 10-90th (light gray) percentile bands. Each
period is a quarter.
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Table 2: Variance Decomposition

Over periodicities of 2-100Q Over periodicities of 6-32Q

Both Technology Exp. Noise Both Technology Exp. Noise

Home TFP 1.00 1.00 0.00 1.00 1.00 0.00

Home Consumption 0.70 0.54 0.16 0.30 0.10 0.20

Foreign Consumption 0.63 0.49 0.14 0.30 0.13 0.17

Home Investment 0.62 0.46 0.15 0.42 0.29 0.13

Foreign Investment 0.68 0.43 0.25 0.45 0.14 0.31

Interest Rate Differential 0.57 0.46 0.11 0.37 0.23 0.14

Real Exchange Rate 0.64 0.45 0.20 0.36 0.14 0.22

Expected Excess Returns 0.50 0.35 0.15 0.37 0.19 0.18

RER Changes (∆qt) 0.30 0.11 0.18 0.28 0.08 0.20

Notes: The table reports the estimated variance shares (at periodicities between 2 and 100 quarters and
between 6 and 32 quarters) explained by technological disturbances (Technology), expectational disturbances
(Exp. Noise), and the combination of both.

receive are about news pretty far into the future. We can see this from the fact that the

expectational noise raises TFP expectations for TFP fairly far in the future, peak impact is

at 20 quarters in the future. With this kind of very far in advance information, consumption

does not respond strongly until the expected TFP improvement becomes closer in time.

3.2 Variance decomposition

To further quantify the effects, we consider the respective variance shares of the endoge-

nous variables that the two disturbances explain. The results are reported in Table 2. The

table reports decomposition of variation over a wide band of frequencies (2-100 quarters)

and also the higher frequency, business cycle variation (6-32 quarters).

By our identification restrictions, the technological disturbance we estimate, εa, accounts

for 100% of the variation in TFP, while the expectational noise disturbance is completely

orthogonal to it.

In addition, the estimates indicate that the combination of the two shocks explain 70%

(30%) of the wide-band (business cycle) variation in US consumptions, and 63% (30%) of

the wide-band (business cycle) variation in foreign (G6) consumption. The two shocks also

account for 62% (42%) of the wide-band (business cycle) variation in US investment, and

68% (45%) of the wide-band (business cycle) variation in foreign (G6) investment. Thus, the
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Figure 6: Impulse responses to Noise (εv) disturbance

Notes: The figure displays IRFs to a one standard deviation impulse in the expectational disturbance at
time t = 0. The shaded area are the 16-84th (dark gray) and 10-90th (light gray) percentile bands. Each
period is a quarter.
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disturbances to TFP and its expectation are indeed significant drivers of macro aggregates,

both at high and low frequencies.

The relative impact of the true technological disturbance and the noise disturbance,

however, differ across the frequency bands in an interesting way. The true technological

disturbance is more important in the lower frequencies, while noise shocks are more important

in the higher frequencies. For example, the true technological disturbances explain 54%

(10%) of the wide-band (business cycle) variation in US consumptions, and 49% (13%) of the

wide-band (business cycle) variation in foreign (G6) consumption, while the expectational

noise disturbance explains 16% (20%) of the wide-band (business cycle) variation in US

consumption and about 14% (17%) of the wide-band (business cycle) variation in foreign

consumption. Thus, consumption is not driven only by the actual productivity disturbance,

but also by disturbances to the expectations of future TFP, and these noisy expectation

shocks are relatively more important at high frequencies.9 This showcases that endogenous

variables are impacted by noise, but at the same time the noise effect is more transitory than

the actual TFP improvement, as agents eventually learn expectations were wrong.

Intuitively, one would expect this latter expectational effect to also have an impact on

asset prices. And indeed, Table 2 reveals the shares of the variation in exchange rate (the

international asset price of key interest to this study) that are driven by those two distur-

bances. The disturbances to productivity explain 45% (14%) of its wide-band (business-

cycle) frequency fluctuations, while we see that expectational noise disturbances are also

quantitatively important, explaining another 20% (22%) of the exchange rate variation.

Thus, together two types of shocks we identify account for 64% (36%) of the wide-band

(business cycle) frequencies variation of the exchange rate. We find a similar split in the

importance of the two disturbances for the interest rate differential, with actual productivity

disturbances explaining 46% (23%) and the expectational noise disturbances explaining 11%

(14%) of the interest rate differential fluctuations.

Moreover, these disturbances together explain roughly half of the wide-band variation in

expected currency returns, 35% due to TFP disturbances and another 15% by disturbances

to TFP expectations. Thus, these two shocks are affecting the exchange rate not just through

variation in interest rate differential, but also by affecting expected currency returns, which

we know to be quite volatile and important to understand.

Lastly, we close this section by also quantifying the overall role of TFP expectations,

9Our results about the macro aggregates are very similar to the ones reported in Chahrour and Jurado
(2021), where they identify the two disturbances based on domestic US data only.
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in terms of both the correctly anticipated part of εat and the noise εvt . This effectively

amounts to stripping away variation in endogenous variables due to current and past TFP

innovations, i.e. the hisotry εa,t. To do so, we examine how much of the wide-band variation

in the exchange rate that our two disturbances can generate (64%) is accounted for by the

combination of (i) correct anticipation of future TFP disturbances and (ii) expectational

noise disturbances. We use the VAR to simulate an economy with technology and noise

disturbances only and compute the 1 − R2 after regressing the change in exchange rate on

present and past technological disturbances. We find that 85% of the exchange rate variation

due to our two types of shocks is generated by anticipation of future outcomes (both accurate

and in error), and only about 15% of our results (or just 4.5% of the overall variation in ∆qt)

can be attributed to current and past productivity disturbances.

4 Exchange rate puzzles and TFP anticipation

Given the large effect our two identified disturbances play in exchange rate dynamics, it is

interesting to consider whether the disturbances are also driving some or all of the exchange

rate puzzles we outlined in the beginning. Namely, (i) the UIP puzzle and its reversal, (ii)

the Backus-Smith puzzle, (iii) excess volatility and persistence, and also (iv) the general

disconnect of exchange rates and macro aggregates.

We present a number of moments related to these puzzles in Table 3, and we discuss each

in detail below.

Deviations from Uncovered Interest Parity Starting with the classic UIP puzzle, note

that as reported in the last row of Table 2, the news and noise shocks about TFP that we

identify explain half of the variation in the predictable excess currency return Et(λt+1). This

suggests that the shocks to TFP and its expectation are significant drivers of the observed

deviations from uncovered interest parity in the data.

Looking at Figures 5 (bottom right panel), we see that the currency excess return drops

marginally just before the realization of the TFP innovation, and then rises significantly

and for a prolongued period of time after TFP improves. These movements in Et(λt+1) are

essentially mirrored by the response of the interest rate differential, which is high in the

anticipation phase, and then low after realization of εat .

This speaks to a general negative correlation between currency returns and the interest

rate differential, a relationship that is at the heart of the “classic” UIP puzzle that high
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interest rates predict high currency returns, in the sense that the seminal Fama (1984) UIP

regression. To test the hypothesis that the shocks we identify indeed generate the puzzling

results the previous literature has documented, we consider the so-called UIP regression that

is the main form in which this puzzle has been documented.

Specifically, the seminal paper by Fama (1984) estimates the regression

λt+1 = α + βUIP (rt − r∗t ) + ut

and the typical finding is an estimated coefficient βUIP < 0. In our raw data, we also find a

significantly negative βUIP of −2.46, in line with previous findings (e.g. Engel, 2014). Next,

we compute the resulting βUIP in a counter-factual dataset where only the two disturbances

we identified, εa and εv, are active. To obtain this, we simulate our estimated VAR by setting

the variance of all other disturbances to zero.

In this counter-factual dataset, we find βUIP = −2.2, revealing that the combination

of disturbances to TFP and to expectations of future TFP qualitatively and quantitatively

reproduces the classic UIP Puzzle relationship. Drilling down further, we construct similar

counter-factual βUIP based on either only-TFP disturbances (including anticipation effects)

and only expectational noise disturbances. The results imply that the TFP disturbances by

themselves generate a βUIP of −2.08, while the βUIP based on only expectational disturbances

is −2.96, as we also report in Table 3 below. Lastly ,we find that the two shocks we identify

generate 68% of the unconditional covariance Cov(λt+1, rt− r∗t ) which underlies this puzzle,

hence these TFP-related disturbances are not only generating the right patterns qualitatively,

but they are quantitatively important to the puzzle.

In addition to this “classic” UIP Puzzle, the conditional responses of the exchange rate

to our identified disturbances also exhibit the Engel (2016) puzzle that the UIP puzzle

essentially “reverses” direction at longer horizons. Namely, it has now been established

that while the Fama (1984) regression finds a negative association between interest rate

differentials and one quarter ahead currency excess returns, the correlation between today’s

interest rate differential and currency excess returns 2+ years into the future is actually

positive.

We can qualitatively see this pattern in Figure 5, for example, in the fact that the high

excess returns in the period following the realization of the TFP improvement are preceded,

a few years beforehand, by high interest rates. Thus, at longer horizons, the correlation

between interest rates and excess returns is positive, not negative, in our impulse responses

(and this is especially pronounced in the case of the response to εat ).
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Table 3: Exchange Rate Related Puzzles and TFP Expectations

Technology Exp. Noise Both Unconditional

Fama βUIP -2.08 -2.96 -2.20 -2.46

Engel βΛ 2.33 1.72 2.62 2.53

σ(rt − r?t )/σ(∆qt) 0.37 0.13 0.25 0.17

autocorr(rt − r?t ) 0.99 0.93 0.98 0.95

corr(∆qt,∆(ct − c?t )) -0.31 -0.38 -0.35 -0.27

autocorr(∆qt) 0.90 0.33 0.58 0.29

autocorr(qt) 0.99 0.97 0.99 0.98

σ(∆qt)/σ(∆ct) 3.99 8.14 5.65 6.05

Notes: The table reports the estimated moments conditional on technological disturbances (Technology),
expectational disturbances (Exp. Noise), and the sum of both disturbances, along the moments estimated
on raw data (Unconditional).

As a summary statistic of this phenomenon, we consider the same moment that Engel

(2016) emphasizes, which is the coefficient of the following regression

∞∑
k=0

Et(λt+k+1) = α0 + βΛ(rt − r∗t ) + εt

In the raw data, we find βΛ = 2.53, which together with the previous result of βUIP =

−2.46, implies that there must be many horizons k > 1 such that Cov(λt+k+1, rt − r∗t ) > 0,

so as to more than offset the negative covariance at short horizons. In our counter-factual

simulation where both of the disturbances we identify are active, we find βΛ = 2.62, thus

these two disturbances can indeed generate the reversal in the UIP puzzle as well. However,

the effect of the noise shock in this cases is muted quantitatively (even though it can also

generate it on its own qualitatively, as we can see in he second column) – the two shocks

together generate 60% of the overall Cov(
∑∞

k=0 Et(λt+k+1), rt−r∗t ) in the data, but the noise

shock is responsible for only one tenth of this effect.

It is also worth nothing that these two disturbances not only generate empirically relevant

regression β’s, but the underlying dynamics of the interest rate differentials (the regressor

in these UIP regressions) are also very much in line with the raw data, as seen by the

σ(rt − r?t )/σ(∆qt) and autocorr(rt − r?t ) moments reported in the Table. Hence, obtaining

UIP regression coefficients of the same magnitude as in the raw data indeed suggests that
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Figure 7: Exchange rate puzzles

(a) Technology (b) Noise

Notes: The figure displays the Backus-Smith Wedge responds to a one standard deviation impulse in the
technological disturbance (left column) and the expectational disturbance (right column) at time t = 0. The
shaded area are the 16-84th (dark gray) and 10-90th (light gray) percentile bands. Each period is a quarter.

the puzzling predictability patterns in excess currency returns that have been identified over

the years are largely driven by disturbances to TFP and its expectations.

Risk-sharing Puzzle Next we turn to the Backus-Smith risk-sharing puzzle. As a first

step we consider the IRF of the Backus-Smith “wedge” defined as

BS Wedget = qt − (ct − c∗t )

Under the null hypothesis of full consumption risk-sharing, in the sense of Backus et al.

(1993), this variable should be equal to zero in all periods.

The impulse responses with respect to a technological and an expectational disturbance

are both reported in Figure 7. We can again see a significant anticipation effect in response

to the actual TFP disturbance, with the wedge being significantly negative as early as 10

quarters before the actual TFP improvement. The fact that the wedge is negative, means

that in anticipation of a US TFP improvement, the dollar does not depreciate sufficiently

to offset the relative US consumption boom. This same phenomenon can also be inferred

from Figure 4, where we see that in anticipation of the US TFP improvement the dollar

is in fact appreciating even though US consumption is high – the opposite of the Backus-

Smith implied relation. After the realization of the US TFP improvement, the wedge adjusts

gradually towards zero.
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The expectational noise disturbance also causes significant effects on the BS Wedge.

On impact of heightened expectations of high future productivity, the wedge also moves

sharply negative and then converges back to zero over 15-quarters. Thus again, optimistic

expectations of future TFP leads to a situation where the exchange rate does not depreciate

sufficiently to offset the resulting boom in domestic consumption.

Overall, this shows that the two disturbances we recover with the Chahrour and Jurado

(2021) procedure are responsible for significant and volatile deviations from the perfect risk-

sharing condition of Backus and Smith (1993). As a summary statistic that can quantify

the contribution of the two shocks we consider, we compute the benchmark Backus-Smith

Puzzle moment much of the literature works with,

Corr(∆qt,∆ct − ∆c∗t ),

in the counter-factual simulations based on the two identified disturbances.We then compare

the resulting moment to the Backus-Smith correlation in the raw data. The results are

presented in Table 3.

As is well know from previous research the correlation in the raw data is not just far from

1, but is in fact negative, equal to −0.27 in our sample. In the counter-factual sample driven

by only the two disturbances we identify, this correlation is very similar and equals −0.35.

Thus, the disturbances to TFP and its expectations tend to drive a similarly puzzling,

negative correlation between exchange rate growth rates and the growth rate in relative

consumption.

Excess Volatility and Persistence Lastly, another set of exchange rate features that

are commonly emphasized as “puzzling” are the excess persistence and volatility of the real

exchange rate. In both cases, the puzzle is that standard models do not deliver exchange

rates that are nearly persistent or volatile enough to match the data. Thus, we are next

interested to what extent the high persistence and volatility found in the data might be

accounted for by the disturbances to TFP and its expectations that we have identified.

In Table 3, we consider three related moments: First, the autocorrelation of quarterly

exchange rate change; second, the autocorrelation of the level of the exchange rate; and third,

the ratio of the standard deviation of quarterly FX changes and consumption growth. The

first result is that the exchange rate dynamics conditional on the two disturbances we extract

are indeed highly persistent. In the counter-factual simulation with both disturbances active,
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the autocorrelation of the exchange rate is 0.99 as compared to 0.98 unconditionally, and

the autocorrelation of the first difference of qt is 0.58 versus 0.29 in the unconditional data.

Thus, our two sets of shocks are in fact generating an even higher degree of persistence than

the exchange rate exhibits on average, suggesting that all other shocks driving the exchange

rate (e.g. monetary shocks) have relatively transitory effects (as is true in standard models).

Lastly, while both the actual TFP disturbance and the expectational noise disturbance

generate high persistence in the level of the exchange rate, the persistence in the growth rate

of the exchange rate is primarily driven by the TFP disturbances themselves.

Lastly, we find that exchange rate growth is indeed highly volatile relative to consumption

growth – that ratio is around 6 conditional on the two disturbances we identify as well as

in the raw data. This volatility appears to be mostly driven by expectational disturbances,

which generate a ratio of around 8.

FX Determination Puzzle Lastly, we wrap up this discussing by considering the so

called determination or disconnect puzzle that we started with originally. This has been

documented in many different ways, with no single summary statistic emerging form pre-

vious work. Here, we will just focus on the link between two key macro aggregates, home

consumption (as a basic measure of the business cycle) and home TFP (as the quintessential

driver of standard models), and the real exchange rate. And as is standard in the previous

literature, we will compute the contemporaneous correlation between the macro aggregates

and exchange rate changes.

Unconditionally, in our data corr(∆qt,∆ct) = −0.1 and corr(∆qt,∆at) = −0.07, show-

casing the typical result that exchange rates are not closely related to macro aggregates

contemporaneously. A similar result appears when we consider the above correlation con-

ditional on just the two sets of shocks εat and εvt . When both shocks are active, we have

corr(∆qt,∆ct) = −0.07 and corr(∆qt,∆at) = −0.12, thus the relationship is similarly low.

There are two channels behind this low correlation. One, is the fact that conditional on

a εat shock the effects of the innovation on macro aggregates and the exchange rate appear

at different times, with the exchange rate reacting in anticipation of the TPF improvement.

We have already explained the basic intuition behind this channel.

However, there is also another channel, which has to do with the fact that we estimate

agent’s expectations to be quite noisy. As such, often the exchange rate effectively reacts in

anticipation of a TFP improvement that never actually materializes. And in fact, in terms

of the volatility of ∆qt noise is relatively more important than the actual TFP innovations
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(11% vs 18% in Table 2). Thus, the noise channel we uncover thanks to our identification

procedure plays an important role that would have been otherwise been overlooked.

4.1 Takeaways

In conclusion, let us take stock of the results and their broader implications.

Fundamental connection Our first main conclusion is that exchange rates do indeed

share a strong and important relationship with productivity, which is one of the quintessential

macro “fundamentals” in most models. However, this connection is not immediately obvious

for two reasons.

First, many of the previous studies that have tried to find a link between exchange rates

and macro fundamentals, and TFP in particular, had taken as a null hypothesis the standard

model formulation where all TFP shocks are pure surprises. From that point of view, one

would only look for a relationship between qt and current and past macro aggregates. As our

discussion in Section 3 indicates, however, the link with current and past TFP innovations

εt,a is very weak, and accounts for only 3-4% of the variation in ∆qt. Instead, as we have

shown extensively, the first-order link between exchange rates and TFP runs through noisy

expectations of future TFP innovations. This will be missed by empirical approaches that

focus on the link with the history of current and past macro fundamentals.

Second, we are of course not the first to recognize that exchange rates are asset prices,

and are thus forward looking and should be expected to predict and correlate with future

macro fundamentals. A seminal paper that examines exactly this hypothesis is Engel and

West (2005), however, its results are at best mixed, with some weak supportive evidence

of this leading relationship. How come our results apparently speak to a much stronger

relation?

Engel and West (2005) examine the hypothesis that exchange rates lead macro aggregates

with a Granger causality test of the form

ft = α + A(L)ft−1 +B(L)qt (7)

where ft is some macro fundamental of interest. The follow-up literature has examined

many different potential fundamentals, such as output, consumption, TFP and many others.

This literature has also considered many formulations of this Granger Causality test (first-

differences vs levels). And in general, the results have been relatively weak, to the point that
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no strong consensus of this potential leading relationship has emerged.

Our results shed some interesting light on why the Granger causlity methodology has not

yielded more convincing results, and it has to do with our result that noise in expectations

εvt plays an important role in the variation of qt. This noise would act akin to a measurement

error in the RHS variable of the Granger causality regression in equation (7), attenuating

the coefficient on qt and the estimated explanatory power of current and lagged qt over ft in

any finite sample.

Lastly, a different strand of the literature that tests the hypothesis that qt leads macro

aggregates, such a Sarno and Schmeling (2014), adopts a more non-parametric approach

leveraging the cross-sectional variation in the data. However, that paper and others like it

limit their attention to a potential connection between qt and macro fundamentals up to only

one or two years in the future. Yet, our results indicate that the news driving the exchange

rate are of a low frequency nature that only truly takes form over 3 to 5 year horizons.

Overall, we should not lose sight of the fact that while TFP innovations and their noisy

expectations account for a significant portion of RER variation (up to 66% overall, and

roughly a third of V ar(∆qt) and the variation of qt at business cycle frequencies), our iden-

tified shocks still leave a substantial portion of the exchange rate variation unexplained.

Whether the other shocks that drive qt in the data also generate a disconnect or not is an

interesting topic for future analysis.

Common origin to many FX puzzles One important aspect of the two shocks we

identify is that the resulting conditional dynamics of the exchange rate exhibit many famous

exchange rate puzzles. This suggests that these puzzles, which are often documented and

analyzed in isolation, in fact share a common origin in TFP fluctuations and their noisy

expectations.

It is particularly striking that the two sets of shocks we identify account for 50% of

V ar(Et(λt+1), and for roughly two-thirds of the covariances that are behind seminal results

in the literature such as the regressions of Fama (1984) and Engel (2016). Thus, TFP

disturbances and their noisy expectations indeed play a very important role in understanding

the puzzlingly volatile currency returns and their complex dynamics.

These estimates are significant for two reasons. First, the apparent importance in pro-

ductivity fluctuations as drivers of exchange rate puzzles validates a very long tradition in

the theoretical literature of building models of exchange rate puzzles that are indeed pri-

marily driven by TFP innovations (e.g. Verdelhan (2010), Bansal and Shaliastovich (2012),
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Colacito and Croce (2013) and many others). Our results also complement the empirical

results of Kim et al. (2017), who find that while monetary policy shocks indeed have a sub-

stantial impact on the exchange rate as well, those impacts do not display any violations of

uncovered interest parity. So the study of exchange rate puzzles is rightly focused on using

TFP as a driver, while monetary policy shocks are important in their own right, but are

often studied instead in terms of their impact on the international transmission of business

cycles within first-order models (e.g. Clarida et al. (2002)).

Second – that said, it is important to realize that existing models of exchange rate puzzles

are still insufficient, given our results, and more work needs to be done to bring models closer

to the novel features of the data we uncover. On the one hand, our empirical results suggest

that noisy expectations of future TFP innovations play a crucial role in both exchange rate

fluctuations and in puzzles such at the deviations from UIP and the Backus-Smith condition.

Existing models, instead, rely heavily on information structures where all productivity shocks

are pure surprises. Moreover, many of the existing models address only one of the UIP (e.g.

Verdelhan (2010)) and Backus-Smith puzzles (e.g. Corsetti et al. (2010)), but not the two

together. Our results, instead, show that conditional on the shocks to TFP and their noisy

expectations, the dynamic responses of the exchange rates generate both types of deviations.

So we need models where both puzzles arise at the same time, as jointly driven by noisy

expectations of TFP.

Among the existing class of models, it would seem like long-run risk models in the vein

of Colacito and Croce (2013) are the most promising ones. Those are not models of noisy

expectations of future TFP per-se, but they are still a mid-point between a framework where

TFP innovations are pure surprises and where there is significant noisy anticipation of future

TFP. Moreover, those models have also been shown to be able to account for both the UIP

and the Backus-Smith puzzles at the same time.

That said, we caution that this paradigm still needs to be further refined to match the full

extent of our empirical results, even though it shares some of the qualitative intuition behind

our estimates. Specifically, we find that the home consumption is elevated and persistently

increasing in expectation of the future TFP improvement. In the log-run risk class of models,

home consumption is in fact depressed upon an improvement in the long-run growth rate of

TFP (which acts akin to a news shock because most of its TFP improvement effects accrue in

the future, due to it being a persistent change in the growth rate). This opposite movement

in consumption is a characteristic feature of the full risk-sharing setup in this class of models

– home agents are effectively “sharing” their good news about high future home output with
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foreign agents by transferring resources abroad today.

So there is more work to be done on the modeling front, and this discussion highlights

how our rich empirical results can be used to inform the needed improvements in theoretical

models, and can also be used to estimate and discipline such models. Perhaps one interesting

avenue for future research is to marry the incomplete markets setup of Corsetti et al. (2010)

with the Epstein-Zin utility and non-linear solutions of Colacito and Croce (2013), and then

use our estimates to discipline the information structure and dynamics of the forcing process.

Factor structure in currency excess returns As a parting thought, we want to qual-

itatively link our estimates with the well established results in the asset pricing literature

that the cross-section of excess currency returns has a clear factor structure. Studies like

Lustig et al. (2011) have documented this, but the literature has also been puzzled by the

apparent fact that the estimated currency return factors are not related to the factors that

explain the prices and returns of other risky assets such as equities (e.g. Burnside (2011)).

Our headline results relate to this literature in a couple of ways. First, as shown above,

we find that half of the variation in expected currency returns Et(λt+1) is driven by just two

disturbances εvt and εat . This speaks to a two-factor structure of currency returns. Moreover,

those disturbances are also closely linked to a deep driver of macro fluctuations – productivity

– and as such we would expect them to affect the price of other risky assets as well.

And indeed, we find that they do. As a quick illustration, in Figure 8 we plot the impulse

response of the relative dividend-to-price ratio (US relative to the G6 average). Note that

the pricing of equities is indeed responding strongly to our shocks, both in anticipation of

the actual TFP improvement and in response to a noise shock to expectations.

This suggests that indeed there might a common, fundamental driver to both currency

premia and equity premia. However, the TFP innovation and the noise shock seem to

generate the opposite correlation between stock prices and currency premia. While the TFP

innovation pushes towards a negative such correlation, the noise shock implies a positive

correlation. These opposing forces might explain why the previous literature, which has

only looked at unconditional links between equity and currency returns, has found no strong

relationship.

Once you isolate the actual TFP innovations and the noise in the expectation of such

innovations, the conditional link between equity and currency risk premia seems clear. This

calls for richer models, both theoretical and empirical, to further analyze this potential

fundamental connection in future work.
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Figure 8: Exchange rate puzzles

Notes: The figure displays the IRF a one standard deviation impulse in the technological disturbance (left
column) and the expectational disturbance (right column) at time t = 0. The shaded area are the the
16-84th (dark gray) and 5-95th (light gray) percentile bands. Each period is a quarter.

5 Conclusions

We have provided empirical evidence that exchange rates are not disconnected from macro

aggregates, but that they are indeed tightly linked to fluctuations in noisy expectations of

future TFP improvements. This link, however, has been difficult to uncover previously

because the anticipation effects, compounded with noise in expectations, make it far from

obvious in the raw data. In addition, the two sets of shocks we identify appear to generate a

number of famous FX puzzles at the same time, which speaks to a common and fundamental

origin of exchange rate puzzles.
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A Additional Tables and Figures

A.1 Extended sample – 2018:Q4
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Figure 9: Impulse Response Functions to the Main FX shock (ε1)

, 1976:Q1-2018:Q4

Notes: The figure reports the impulse responses to the main FX shock, along with the 16-84th (dark gray)
and 10-90th (light gray) percentile bands. Each period is a quarter.
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Figure 10: Impulse responses to Technology (εa) disturbances, 1976:Q1-2018:Q4

Notes: The figure displays IRFs to a one standard deviation impulse in the technological disturbance at
time t = 0. The shaded area are the 68% and 80% confidence intervals. Each period is a quarter.
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Figure 11: Impulse responses to Noise (εv) disturbance, 1976:Q1-2018:Q4

Notes: The figure displays IRFs to a one standard deviation impulse in the expectational disturbance at
time t = 0. The shaded area are the 68% and 80% confidence intervals. All units are annualized percents.
Each period is a quarter.
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Table 4: Share of variance explained by the Main FX shock (ε1); Extended sample 1976:Q1-
2018:Q4

Unconditional Q1 ∆ Q4 ∆ Q12 ∆ Q24 ∆ Q40 ∆

Home TFP 0.18 0.03 0.03 0.06 0.17 0.26

Home Consumption 0.38 0.04 0.08 0.27 0.45 0.49

Foreign Consumption 0.33 0.01 0.02 0.04 0.19 0.30

Home Investment 0.27 0.19 0.25 0.31 0.37 0.37

Foreign Investment 0.19 0.02 0.02 0.04 0.12 0.21

Interest Rate Differential 0.33 0.42 0.40 0.30 0.28 0.29

Real Exchange Rate 0.68 0.64 0.78 0.85 0.75 0.70

Expected Excess Returns 0.35 0.58 0.28 0.29 0.36 0.36

∆qt 0.58 0.64 0.60 0.58 0.58 0.58

Notes: The table reports the estimated variance shares accounted for by the main exchange rate shock, both
unconditionally and at different horizons.

Table 5: Variance Decomposition; Extended sample 1976:Q12018:Q4

Over periodicities of 2-100Q Over periodicities of 6-32Q

Both Technology Exp. Noise Both Technology Exp. Noise

Home TFP 1.00 1.00 0.00 1.00 1.00 0.00

Home Consumption 0.67 0.42 0.25 0.33 0.07 0.26

Foreign Consumption 0.47 0.32 0.15 0.18 0.07 0.12

Home Investment 0.56 0.34 0.21 0.27 0.09 0.19

Foreign Investment 0.50 0.25 0.25 0.35 0.08 0.27

Interest Rate Differential 0.41 0.28 0.13 0.30 0.18 0.11

Real Exchange Rate 0.48 0.26 0.22 0.29 0.08 0.20

Expected Excess Returns 0.38 0.22 0.16 0.32 0.16 0.16

∆qt 0.24 0.06 0.18 0.23 0.05 0.18

Notes: The table reports the estimated variance shares (at periodicities between 2 and 100 quarters and
between 6 and 32 quarters) explained by technological disturbances (Technology), expectational disturbances
(Exp. Noise), and the combination of both.

A.2 VECM
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Table 6: Share of variance explained by the Main FX shock (ε1); VECM

Unconditional Q1 ∆ Q4 ∆ Q12 ∆ Q24 ∆ Q40 ∆

Home TFP 0.12 0.01 0.01 0.05 0.10 0.13

Home Consumption 0.34 0.09 0.13 0.25 0.41 0.50

Foreign Consumption 0.18 0.02 0.02 0.04 0.10 0.16

Home Investment 0.15 0.09 0.14 0.13 0.14 0.15

Foreign Investment 0.09 0.02 0.02 0.03 0.06 0.07

Interest Rate Differential 0.45 0.48 0.50 0.43 0.42 0.43

Real Exchange Rate 0.85 0.74 0.88 0.93 0.90 0.90

Expected Excess Returns 0.44 0.55 0.39 0.39 0.42 0.43

∆qt 0.69 0.74 0.70 0.69 0.70 0.69

Notes: The table reports the estimated variance shares accounted for by the main exchange rate shock, both
unconditionally and at different horizons.

A.3 Bilateral VARs
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Table 7: Share of variance explained by the Main FX shock (ε1); Individual Countries
(Median across 6 bilateral estimates)

Unconditional Q1 ∆ Q4 ∆ Q12 ∆ Q24 ∆ Q40 ∆

Home TFP 0.35 0.035 0.055 0.17 0.33 0.43

Home Consumption 0.345 0.035 0.055 0.17 0.345 0.395

Foreign Consumption 0.31 0.04 0.04 0.14 0.225 0.385

Home Investment 0.305 0.175 0.23 0.245 0.33 0.33

Foreign Investment 0.295 0.05 0.055 0.175 0.265 0.355

Interest Rate Differential 0.295 0.2 0.255 0.265 0.27 0.3

Real Exchange Rate 0.71 0.675 0.81 0.85 0.805 0.77

Expected Excess Returns 0.415 0.39 0.255 0.315 0.36 0.405

∆qt 0.615 0.675 0.635 0.61 0.615 0.615

Notes: The table reports the estimated variance shares accounted for by the main exchange rate shock, both
unconditionally and at different horizons.

Table 8: Variance Decomposition; VECM

Over periodicities of 2-100Q Over periodicities of 6-32Q

Both Technology Exp. Noise Both Technology Exp. Noise

Home TFP 1.00 1.00 0.00 1.00 1.00 0.00

Home Consumption 0.28 0.12 0.16 0.25 0.05 0.20

Foreign Consumption 0.24 0.16 0.09 0.15 0.08 0.07

Home Investment 0.29 0.08 0.22 0.40 0.06 0.34

Foreign Investment 0.22 0.08 0.14 0.16 0.04 0.12

Interest Rate Differential 0.66 0.15 0.51 0.62 0.09 0.53

Real Exchange Rate 0.49 0.14 0.35 0.33 0.06 0.27

Expected Excess Returns 0.49 0.13 0.36 0.47 0.09 0.38

∆qt 0.22 0.04 0.17 0.24 0.04 0.20

Notes: The table reports the estimated variance shares (at periodicities between 2 and 100 quarters and
between 6 and 32 quarters) explained by technological disturbances (Technology), expectational disturbances
(Exp. Noise), and the combination of both.
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Figure 12: Impulse Response Functions to the Main FX shock (ε1), VECM

Notes: The figure reports the impulse responses to the main FX shock, along with the 16-84th (dark gray)
and 10-90th (light gray) percentile bands. Each period is a quarter.
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Figure 13: Impulse responses to Technology (εa) disturbances, VECM

Notes: The figure displays IRFs to a one standard deviation impulse in the technological disturbance at
time t = 0. The shaded area are the 68% and 80% confidence intervals. Each period is a quarter.
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Figure 14: Impulse responses to Noise (εv) disturbance, VECM

Notes: The figure displays IRFs to a one standard deviation impulse in the expectational disturbance at
time t = 0. The shaded area are the 68% and 80% confidence intervals. All units are annualized percents.
Each period is a quarter.
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Table 9: Variance Decomposition, Individual countries (Median)

Over periodicities of 2-100Q Over periodicities of 6-32Q

Both Technology Exp. Noise Both Technology Exp. Noise

Home TFP 1 1 0 1 1 0

Home Consumption 0.69 0.515 0.17 0.34 0.095 0.24

Foreign Consumption 0.54 0.41 0.12 0.29 0.12 0.145

Home Investment 0.62 0.455 0.16 0.375 0.2 0.18

Foreign Investment 0.56 0.43 0.145 0.355 0.105 0.205

Interest Rate Differential 0.395 0.27 0.125 0.245 0.11 0.13

Real Exchange Rate 0.59 0.395 0.195 0.37 0.11 0.245

Expected Excess Returns 0.415 0.25 0.145 0.31 0.13 0.18

∆qt 0.355 0.095 0.235 0.325 0.06 0.24

Notes: The table reports the estimated variance shares (at periodicities between 2 and 100 quarters and
between 6 and 32 quarters) explained by technological disturbances (Technology), expectational disturbances
(Exp. Noise), and the combination of both.
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Figure 15: Impulse Response Functions to the Main FX shock (ε1), Canada

Notes: The figure reports the impulse responses to the main FX shock, along with the 16-84th (dark gray)
and 10-90th (light gray) percentile bands. Each period is a quarter.
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Figure 16: Impulse responses to Technology (εa) disturbances, Canada

Notes: The figure displays IRFs to a one standard deviation impulse in the technological disturbance at
time t = 0. The shaded area are the 68% and 80% confidence intervals. Each period is a quarter.
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Figure 17: Impulse responses to Noise (εv) disturbance, Canada

Notes: The figure displays IRFs to a one standard deviation impulse in the expectational disturbance at
time t = 0. The shaded area are the 68% and 80% confidence intervals. All units are annualized percents.
Each period is a quarter.
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Figure 18: Impulse Response Functions to the Main FX shock (ε1), France

Notes: The figure reports the impulse responses to the main FX shock, along with the 16-84th (dark gray)
and 10-90th (light gray) percentile bands. Each period is a quarter.
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Figure 19: Impulse responses to Technology (εa) disturbances, France

Notes: The figure displays IRFs to a one standard deviation impulse in the technological disturbance at
time t = 0. The shaded area are the 68% and 80% confidence intervals. Each period is a quarter.
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Figure 20: Impulse responses to Noise (εv) disturbance, France

Notes: The figure displays IRFs to a one standard deviation impulse in the expectational disturbance at
time t = 0. The shaded area are the 68% and 80% confidence intervals. All units are annualized percents.
Each period is a quarter.
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Figure 21: Impulse Response Functions to the Main FX shock (ε1), Germany

Notes: The figure reports the impulse responses to the main FX shock, along with the 16-84th (dark gray)
and 10-90th (light gray) percentile bands. Each period is a quarter.
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Figure 22: Impulse responses to Technology (εa) disturbances, Germany

Notes: The figure displays IRFs to a one standard deviation impulse in the technological disturbance at
time t = 0. The shaded area are the 68% and 80% confidence intervals. Each period is a quarter.
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Figure 23: Impulse responses to Noise (εv) disturbance, Germany

Notes: The figure displays IRFs to a one standard deviation impulse in the expectational disturbance at
time t = 0. The shaded area are the 68% and 80% confidence intervals. All units are annualized percents.
Each period is a quarter.
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Figure 24: Impulse Response Functions to the Main FX shock (ε1), Japan

Notes: The figure reports the impulse responses to the main FX shock, along with the 16-84th (dark gray)
and 10-90th (light gray) percentile bands. Each period is a quarter.
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Figure 25: Impulse responses to Technology (εa) disturbances, Japan

Notes: The figure displays IRFs to a one standard deviation impulse in the technological disturbance at
time t = 0. The shaded area are the 68% and 80% confidence intervals. Each period is a quarter.
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Figure 26: Impulse responses to Noise (εv) disturbance, Japan

Notes: The figure displays IRFs to a one standard deviation impulse in the expectational disturbance at
time t = 0. The shaded area are the 68% and 80% confidence intervals. All units are annualized percents.
Each period is a quarter.

63



Figure 27: Impulse Response Functions to the Main FX shock (ε1), Italy

Notes: The figure reports the impulse responses to the main FX shock, along with the 16-84th (dark gray)
and 10-90th (light gray) percentile bands. Each period is a quarter.
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Figure 28: Impulse responses to Technology (εa) disturbances, Italy

Notes: The figure displays IRFs to a one standard deviation impulse in the technological disturbance at
time t = 0. The shaded area are the 68% and 80% confidence intervals. Each period is a quarter.
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Figure 29: Impulse responses to Noise (εv) disturbance, Italy

Notes: The figure displays IRFs to a one standard deviation impulse in the expectational disturbance at
time t = 0. The shaded area are the 68% and 80% confidence intervals. All units are annualized percents.
Each period is a quarter.
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Figure 30: Impulse Response Functions to the Main FX shock (ε1), UK

Notes: The figure reports the impulse responses to the main FX shock, along with the 16-84th (dark gray)
and 10-90th (light gray) percentile bands. Each period is a quarter.
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Figure 31: Impulse responses to Technology (εa) disturbances, UK

Notes: The figure displays IRFs to a one standard deviation impulse in the technological disturbance at
time t = 0. The shaded area are the 68% and 80% confidence intervals. Each period is a quarter.

68



Figure 32: Impulse responses to Noise (εv) disturbance, UK

Notes: The figure displays IRFs to a one standard deviation impulse in the expectational disturbance at
time t = 0. The shaded area are the 68% and 80% confidence intervals. All units are annualized percents.
Each period is a quarter.
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