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Abstract

Macroeconomic disturbances affect both current fundamentals and expec-

tations of future fundamentals, but most analyses report only the total of these

effects. The expectation response function (ERF) isolates the role of expected

future fundamentals in a theory. Defined as the response today to a change

in expected fundamentals at each future horizon, the ERF does not depend

on the fundamentals’ laws of motion, the information held by agents, or the

assumption of rational expectations. In applications, we show that (i) the

new-Keynesian model implies modest expectational effects of technology and

monetary shocks, while (ii) markup shocks in a medium-scale DSGE model

have far larger expectational impacts than the “puzzling” effects of forward

guidance.
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1 Introduction

Economists have long sought to isolate the macroeconomic effects of beliefs, both

in data and in theory. From the perspective of theory, this task is challenging be-

cause virtually all model-based assessments of the importance of expectations make

assumptions about the processes for fundamentals, the information available to peo-

ple in the economy, and the manner in which people form their expectations about

economic fundamentals. These auxiliary assumptions may preclude significant effects

of expectations even when the economic environment requires agents to be extremely

forward looking.

To isolate the effects of expectations in a particular theoretical model, it is useful

to compute the “expectation response function”, or ERF. The ERF isolates the theo-

retical effects of changes in expectations, without making further assumptions about

the source of expectation changes. It describes how a time-t endogenous variable re-

sponds to an anticipated change in the fundamental that will occur at time t+h. The

primary benefit of using the ERF to study expectational effects, particularly com-

pared to an impulse response function, is that it can be computed independently of

assumptions regarding how agents make their forecasts or assumptions regarding the

nature of the exogenous process for the fundamental. Moreover, the ERF isolates the

effects of expectations at different horizons, so researchers can assess more precisely

how the timing of expectational changes matters for their present effects.

In this paper, we first define and illustrate the ERF in the context of a simple

univariate example. Then we show how to compute it for any linear model. The

approach follows a QZ-decomposition strategy similar to the techniques now broadly

employed for solving linear models. In contrast to how these tools are usually applied,

however, the ERF can be computed without assumptions about the laws of motion of

the underlying exogenous processes. Hence, the ERF does not describe a full rational

expectations equilibrium, but rather an equilibrium in which agents anticipate that

all model equations describing endogenous variables are satisfied but take (their own)

expectations of aggregate fundamentals as exogenous.

The ERF appears in prior literature, though it has not been named and has rarely

been employed as a direct object of interest.1 Our contribution is to demonstrate the

1The penultimate step of Blanchard and Kahn (1980) is written in terms of the ERF. The ERF

appears in Woodford (2003) as an intermediate step in model solution; in a few instances he uses it
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ERF’s usefulness in isolating the effects of expectations within a given theory, and to

show in applications how examining it can influence the conclusions that researchers

draw.

A natural question for theorists is the degree to which variables depend on ex-

pectations, relative to past states. We present several approaches for answering this

question. Like impulse response functions (IRFs), important intuition can be gained

by visual inspection of ERFs. Treating ERF coefficients as the coefficients of a no-

tional process, we propose several measures that can be interpreted as a variance

decomposition. For example, ERF coefficients can be used as weights to compute a

notional “average horizon” of expectations effects. We also propose using the spectral

density of the notional process to measure the contribution of medium or long-run

expectations.

We use the ERF to diagnose the effects of expectations changes in several models

that have been used by applied macroeconomists. In our first application, we com-

pare the expectational effects of future total factor productivity (TFP) in a range of

models that have been used to study the empirical importance of TFP news. After

reproducing the classic news-comovement problem in the real business cycle (RBC)

model, we show that the comovement “fixes” of Jaimovich and Rebelo (2009) solve

the qualitative problem but not the quantitative one: expected TFP improvements

have small effects on all variables relative to the effects of changes in current TFP. We

then show that the effects of anticipated changes in TFP are also modest in both the

three equation new-Keynesian model and a medium scale dynamic stochastic general

equilibrium (DSGE) model with a full set of frictions. In both models, the size of an-

ticipation effects hinges largely on how aggressively monetary policy fights inflation,

especially at longer horizons of anticipation.

In our second application, we review the evidence about the effects of forward

guidance on interest rates in the same two versions of the new-Keynesian model. Our

results emphasize a point that has already appeared occasionally in the discussion

around that literature:2 the appearance of a “puzzle” relies almost entirely on pre-

to assess the importance of forecasts in setting optimal policy. A closely related object also appears

in the literature on adaptive learning (Preston, 2005; Eusepi and Preston, 2011). The non-structural

approaches to evaluating policy counterfactuals proposed by McKay and Wolf (2023) and Barnichon

and Mesters (2023) presume that the ERF can be econometrically identified.
2For an example, see Susanto Basu’s 2015 discussion of McKay et al. (2016) at the Workshop on

Forward Guidance and Expectations at the New York Federal Reserve.
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venting the central bank from responding to endogenous variables with interest rate

policy. A forward guidance puzzle appears in nominal models when they are cali-

brated to be close to the region of indeterminacy. The results of this exercise suggest

that the questions of equilibrium determinacy and the effects of forward guidance are

too closely linked to be studied independently.

Lastly, we compare ERFs of the main business cycles variables to six commonly-

used shocks in the context of standard medium-scale DSGE model. For several shocks,

we again find a strong link between the size of their expectational effects and the re-

sponsiveness of the Taylor rule to deviations from target inflation. The exceptions to

this pattern, however, are price and wage markup shocks, which have large expecta-

tional effects regardless of the Taylor rule. We argue that understanding the cause

or causes of these strong expectational effects is an important step in advancing the

research agenda on expectational shocks.

2 The Expectation Response Function

This section first defines and discusses the expectation response function in the con-

text of a simple, one-dimensional, purely forward-looking model, and then moves to

the more general setting.

2.1 Simple model

The endogenous variable of interest is ct and the exogenous fundamental is xt. Since

there are no endogenous states, equilibrium depends only on current and future ex-

pected states, so that the equilibrium value of ct can be represented as

ct =
∞∑
j=0

αjEt[xt+j]. (1)

Consider first the impulse response of ct to some structural shock affecting the

fundamental xt. To compute an impulse response, we must first specify the exogenous

process for xt, for example by assuming xt follows an invertible one-sided moving

average process,

xt =
∞∑
l=0

βlϵt−l. (2)
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While explicit micro-foundations usually underly the coefficients αj in (1), standard

practice usually make restrictive assumptions about the process for xt based on non-

theoretic statistical norms, for example, by assuming that (2) corresponds to an AR(1)

process.

Using equation (1), and assuming the full information rational expectations im-

plied by knowledge of the disturbances in (2), the impact impulse response to the

shock is

IRF(0) ≡ ∂ct
∂ϵt

=
∞∑
j=0

αj
∂Et[xt+j]

∂ϵt

=
∞∑
j=0

αjβj. (3)

Similarly, the impulse response after one period is

IRF(1) =
∞∑
j=0

αjβj+1,

and so on for additional horizons.

While impulse responses contain valuable information regarding the total effects

of shocks, equation (3) demonstrates the main argument of this paper: the impulse

response function conflates the effects of expectations—the αj—with the sources of

expectations changes, here summarized by the coefficients βj. Not only are the αj

and βj commingled via multiplication, but they are then summed up across peri-

ods, obscuring information about the horizon at which expectations are driving the

endogenous variable. Intuitively, if xt represents productivity, the impact impulse re-

sponse does not tell us if consumption is moving today because today’s productivity

has changed or because agents are responding to the shock’s implications for future

productivity.

Our goal is to provide a tool to examine the effects of expectations implied by

the economic model (1), without making commitments regarding formation of the

Et[xt+j] terms. For this, we propose the expectation response function, defined by

ERF(j) ≡ ∂ct
∂Et[xt+j]

. (4)
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Applied to equation (1), this definition implies that ERF(j) = αj; i.e., the expectation

response function is simply the sequence of weights on future expectations.

In the example, the ERF has the advantage that it can be computed without

ever committing to the parameters βj of the exogenous process. Or, indeed, without

committing to a particular form of the process or to the full information assumption,

provided that the series on the right side of equation (1) converges. In the following

section, we show how the simple idea can be applied to generic linear environments,

including those with endogenous states.

2.2 More general setting

The simple example above can be generalized in several dimensions: by allowing for

many variables and shocks, by admitting endogenous state variables, and by relaxing

the assumption of rational (or model consistent) expectations. Here, we present a

canonical model form for which the ERF can be solved using standard techniques.3

Our discussion below explains how each of these generalizations is introduced.

We consider a general linearized model that takes a recursive form:

AkÊt[kt+1] + AyÊt[yt+1] = Bkkt +Byyt + AxÊt[xt+1] +Bxxt (5)

In the above equation (5), the variables kt consist of endogenous states pre-determined

at time t − 1, the variables yt consist of endogenous jump variables, and xt the

exogenous states of the system. The matricesAk, Ay andAx have dimension (neq×nk),

(neq × ny) and (neq × nx) respectively, with the same dimensionality for their time t

counterparts Bk, By, and Bx. Finally, the expectations operator Êt[·] encompasses –

but is not limited to – rational expectations; all that is needed is that Êt[·] satisfies
the law of iterated expectations.4

We pause here to emphasize that, since our approach does not require assuming

any process for or information about xt, a well-defined model will have neq = nk+ny.

Standard approaches used in the literature typically require including the process for

exogenous variables as an input to solving the model, hence, that neq = nk +nx+ny.

Our treatment of the model is distinct because we treat (expectations of) exogenous

fundamentals as variables that are determined outside of the economic model.
3Our computational approach here shares elements with Klein (2000) and Sims (2001).
4Woodford (2013) provides some useful results for representing equilibrium in the form of (5)

when expectations are non-rational.
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Define A ≡ [Ak Ay] and B ≡ [Bk By]. Using a QZ decomposition, we can find

matrices {Q,Z, S, T} that satisfy QAZ = S and QBZ = T , with S and T block

upper triangular and Z unitary. The matrices S, T , and Z can be partitioned into

the blocks

S =

[
S11 S12

0 S22

]
, T =

[
T11 T12

0 T22

]
, and Z =

[
Z11 Z12

Z21 Z22

]
,

where S11 and (nk×nk), S12 is (nk×ny), and S22 is (ny ×ny) and similarly for T and

Z. Letting Γ ≡ T−1
22 S22 and M ≡

[
T−1
22 Q2Ax + ΓT−1

22 Q2Bx

]
, we show in the appendix

that the equilibrium value of yt is given by

yt = Z21Z
−1
11 kt +

∞∑
j=0

ERF(j)Êt[xt+j], (6)

in which the expectation response function coefficients correspond to

ERF(0) ≡ −(Z22 − Z21Z
−1
11 Z12)T

−1
22 Q2Bx (7)

for horizon zero, and by

ERF(j) ≡ −(Z22 − Z21Z
−1
11 Z12)Γ

j−1M (8)

for any horizon j > 0.

In this algorithm, the usual conditions for existence and local uniqueness of equi-

librium are assumed to hold; namely, that Z11 is invertible.

2.3 Summary statistics of forward-looking behavior

One barrier to interpreting the ERF is the sheer number of coefficients described by

(7) - (8). Because the ERF is an infinite dimensional object, it can be difficult to select

particular coefficients for analysis. In this section, we propose several approaches to

summarize and visualize the information contained in the ERF.

Our approach to summarizing the ERF starts with defining a notional infinite-

order moving average process using the ERF coefficients. Let

ỹt ≡
∞∑
j=0

ERF(j)ut−j, (9)
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where the ut is a vector of i.i.d. white noise disturbances. While {ỹt}∞t=0 is a purely

notional process, and (9) does not correspond to the dynamics in an equilibrium of

the model, a high degree of persistence in ỹt corresponds to strongly forward-looking

behavior in yt. While one could invoke any standard approach to measuring the

persistence of ỹt, we propose a few specific statistics that have not appeared before

in the literature.5

The first measure is the “share of future weights.” It captures the fraction of

(squared) coefficient weights that are applied to terms other than the current fun-

damental. The share of future weights of the ERF for variable k in response to

fundamental l is defined as

SFWkl ≡
∑∞

j=1(ERFkl(j))
2∑∞

j=0(ERFkl(j))2
.

This statistic can be interpreted as the share of variance of ỹt that is explained by

disturbances not occurring at t.

The share of future weights is a good measure of the relative importance of future

versus current fundamentals, but it does not distinguish weights on relatively near-

future expectations from weights applied to expectations of the distant future. The

“mean horizon of expectation” better captures the horizon of expectations, and is

defined as

MHEkl ≡
∑∞

j=0(ERFkl(j))
2 × j∑∞

j=0(ERFkl(j))2
.

Essentially, the MHEkj corresponds to a weighted average of horizons j, with weights

that are proportional to the variance contribution of the notional disturbances at each

horizon.6

Alternatively, one may recast ỹt using a Fourier transform and employ techniques

from frequency-domain analysis to measure the degree of forward looking behavior in

the model. The frequency response function of ỹt is

φ(λ) ≡
∞∑
j=0

ERF(j)e−iλj.

5One obvious candidate, the autocorrelation coefficient, can be quite difficult to interpret when

ỹt does not closely resemble an AR(1) process.
6Woodford (2003) uses a similar measure to capture the forward-lookingness of the optimal target

variable in optimal monetary policy problems. His analogue to the MHE excludes the j = 0 horizon

and uses a simple sum of coefficients, rather than their square.
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One natural measure is the low-pass filtered variance share,

LPFk(m) ≡
∫ 2π/m

0
φk(λ)φk(λ)

′dλ∫ π

0
φk(λ)φk(λ)′dλ

,

where m is the periodicity of the highest frequency terms considered. Of course,

different values of m can be considered; in our analysis we consider m = 32, which

corresponds to periodicities beyond the standard business cycle range (more than

eight years when periods are quarters), and m = 100, which corresponds to much

longer-run fluctuations (more than 25 years).

3 Applications

In this section we use the ERF to diagnose the effects of expectations changes in three

different models that have been used by applied macroeconomists.

3.1 Effects of Anticipated Productivity

Much of the literature on anticipated economic shocks has focused on the potential

importance of anticipated productivity. Here, we revisit the implications of a set

of theories in which such news shocks have been considered, with emphasis on the

features of the economic environments (rather than information structure) that are

necessary for anticipation of TFP to play an important role in generating business

cycle fluctuations. We provide more details on model construction and calibration in

the Appendix.

As a baseline and to fix ideas, we first consider the expectation response of aggre-

gate variables to productivity in the standard RBC model. The comovement proper-

ties of surprise TFP shocks are known to depend on the parameterization of the TFP

process, particularly on the persistence parameter in AR(1) specifications for TFP.

Meanwhile, the effects of anticipated productivity are known to give counterfactual

implications for business cycle comovements.

The black line in Figure 1 provides a new perspective on these two related facts.

The figure shows that contemporaneous changes in productivity, captured by the

ERF at horizon zero, deliver a strong comovement of output, consumption, hours,

and investment. By contrast, anticipated changes in productivity, captured by the
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Figure 1: Effects of anticipated productivity growth in real business cycle models.

ERF at horizon one and beyond, always deliver counterfactual comovements, in line

with the predictions of Barro and King (1984).

In light of the RBC results in Figure 1, it is possible to reinterpret the common ob-

servation that the comovement associated with contemporaneous productivity shocks

depend on AR(1) parameters: Since a shock to an AR(1) productivity process implies

changes in both contemporaneous and future productivity, the impact effects of the

shock can be read as a weighted sum of expectation response functions, where higher

AR(1) parameters imply more weight on expected future changes relative to cur-

rent changes. Evidently, a fundamental shock that moves future productivity enough

relative to current will no longer deliver the comovements required by the data.

Jaimovich and Rebelo (2009) introduce a set of modifications to the basic RBC

model with the goal of resolving the comovement problems associated with anticipated

shocks. The green lines in the figure plot the ERF associated with neutral produc-

tivity shocks in their model using their baseline calibration. Indeed, an expected

change in productivity can now produce comovement, but the picture also reveals

a limitation of their approach: anticipated changes must be sufficiently close in the

future—within four quarters—for them to lead to positive investment comovement

with other variables.
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Output Consumption

SFW MHE LPF(32) LPF(100) SFW MHE LPF(32) LPF(100)

RBC 0.80 6.82 0.55 0.34 0.86 7.30 0.79 0.49

JR 0.53 11.71 0.58 0.46 0.71 20.02 0.76 0.66

3-eq NK (stand.) 0.49 0.96 0.31 0.09 0.49 0.96 0.31 0.09

Med. NK (stand.) 0.50 1.36 0.36 0.16 0.69 3.90 0.52 0.33

3-eq NK (accom.) 0.97 66.53 0.95 0.87 0.97 66.53 0.95 0.87

Med. NK (accom.) 0.97 94.69 0.97 0.93 0.99 96.42 0.98 0.94

Table 1: ERF summary statistics for technology: output and consumption

The figure also reveals a more subtle point about the potential for the model to

deliver an important expectational component in business cycles.7 This limitation on

the potential of expectations is a consequence of the restriction that, under rational

expectations, beliefs about a variable can never be more volatile than the variable

itself. Because of this restriction, it is not possible to “activate” expectation effects

without also adding additional variance due to the impact effects pictured in the

ERF. Since the ERF in the case of the Jaimovich and Rebelo (2009) model is strongly

downward sloping, this implies that we cannot induce much variance via expectations

without also inducing even larger variance from the shock realizations themselves: the

ratio of purely expectations-driven fluctuations to those driven by the fundamental

realizations themselves is bound to be small. This property of the ERF explains why,

in the version of this model estimated by Schmitt-Grohé and Uribe (2012), both Sims

(2016) and Chahrour and Jurado (2018) find that the pure expectational effects of

shocks are small, even though the shocks are largely anticipated in advance.

The first two rows of Table 1 provide ERF summary statistics for output in the

RBC and Jaimovich and Rebelo (2009) models.8 The share of future weights measure

7The question here is whether noise shocks, which are orthogonal to fundamentals, could play an

important role. Chahrour and Jurado (2018) provide detailed analysis of the relation between news

shocks, which are correlated with later fundamental realizations, and noise shocks, which are not.
8Though we do not report them, summary statistics for other variables all give qualitatively

similar conclusions in the cases we have looked at.
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Figure 2: Effects of anticipated productivity in new-Keynesian models under alter-

native specifications of the monetary policy rule.

shows that both models place more than half of the ERF weights (again, our statistic

has an interpretation as a variance share in the notional ỹt) on expectations. The

second column shows the mean horizon of expectations (MHE) for these models.

Clearly the SFW and MHE contain different information: the RBC model depends

more on expectations overall, but the Jaimovich and Rebelo (2009) depends more on

further-dated expectations, meaning the latter has a relatively large MHE statistic.

The two LPF statistics tell a story similar to the MHE: the longer the horizon of

expectation, the relatively more important are expectations in the Jaimovich and

Rebelo (2009) model compared to the RBC model.

We next consider the effects of anticipated productivity shocks in two versions of

the new-Keynesian model. The first model we consider is a standard three equation

new-Keynesian model. The second model is a quantitative medium scale DSGE model

with nominal wage and price frictions, in the spirit of Christiano et al. (2005) and

Smets and Wouters (2007). Both models include a version of the Taylor rule for

monetary policy,

it = ρit−1 + (1− ρi)(ϕππt + ϕyŷt) + ϵt. (10)
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In (10), it the nominal interest rate, ρi is the interest rate smoothing parameter, ϕπ

is the weight on inflation and ϕy is the weight on the output gap.

Figure 2 depicts the expectation response function to neutral productivity in the

two versions of the new-Keynesian model. The lighter lines depict the effects of

anticipated productivity under a fairly standard calibration of the Taylor rule, with

ϕπ = 1.5, ϕy = 0.5, and ρi = 0.5. We call this specification “standard” monetary

policy. In these cases, both models deliver modest effects of anticipated productivity,

effects which die out at horizons of anticipation just over a year. As discussed just

above, the downward sloping nature of the ERFs indicates that these models, which

are calibrated with fairly strong nominal rigidities, are rather unlikely to deliver a

large role for pure expectation shocks under rational expectations.

In contrast, the darker lines in the figure depict the effects of the same changes

in expectations under a less active Taylor rule with coefficients ρi = 0.5583 ϕπ =

1.02, and ϕy = 0.005 , which are the values estimated by Blanchard et al. (2013).

(Coefficients similar to these have been estimated in various contexts.) We call this

specification “accommodative” monetary policy. With less active Taylor rules, both

models now deliver strong expectation responses even at horizons of four years or

longer, as well as empirically realistic comovements at shorter horizons.

The case of the medium-scale DSGE model is especially notable because ERFs

are so flat: the response to a 10 year ahead change in productivity growth remains

more than half as large as the response to a productivity change next quarter. The

extremely flat ERF profiles, along with strong comovement at all horizons, make

this version of the model especially conducive to finding a large role for expectation

shocks.

The last four rows of Table 1 provide the ERF summary statistics for the four

different versions of the new-Keynesian models. These statistics clearly show that the

importance of expectations of productivity is strongly influenced by the parameters of

monetary policy, and much less influenced by the additional structure of the medium-

scale model. For example, the LPF(100) statistic is between 9 and 16% for the models

when monetary policy is more active, and is over 85% for both models when monetary

policy is less active.
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3.2 Forward Guidance and Equilibrium Determinacy

We now shift gears to use the ERF to analyze the effect of anticipated changes in

monetary policy. Following the tradition of Campbell et al. (2012), we think of

forward guidance as anticipated (exogenous) deviations from a monetary policy rule.

Hence, implicit in the expectation response function, is that agents anticipate the

central bank will follow its endogenous rule for policy at all horizons other than the

one in which it is expected to deviate.

Figure 3 reports the expectation response function for monetary deviations. Once

again, the lighter line reports the response to anticipated deviations from a Taylor

rule with a standard specification. The results are quite similar to the case of the

productivity shocks, with anticipated monetary deviations having extremely small

real effects if they are anticipated to occur at horizons greater than a year. In short,

with a standard calibration of monetary policy, there is no evidence in any of the

models of a “forward guidance” puzzle.

By contrast, the darker lines plot the effects of anticipated deviations under the

accommodative Taylor rule. Under this calibration, the endogenous response of mone-

tary policy to deviations from inflation and output gap targets is quite muted; i.e. this

is calibration very near to the edge of the determinacy region in both models.

In this case, the effects of anticipated monetary deviations are large, and extend

far out into the future. Indeed, for the medium scale model, the effects of a one-

year anticipated shock exceed those of a surprise shock. Nevertheless, responses for

real variables stop growing with the anticipation horizon after this point and all

ERFs eventually return to zero. Hence, even in this calibration the “puzzle” is much

less extreme than in some formulations of the famous forward guidance experiments

conducted in the literature.

Combining the results of Sections 3.1 and 3.2, some themes begin to emerge.

First, the effects of anticipated changes in fundamentals depend to a large extent

on assumptions about the endogenous response of policy. Second, large expectations

responses are more likely to emerge when the Taylor principle is only barely satisfied,

i.e. when the economy is near to a calibration of indeterminacy. These results suggest

that it may be unwise to study the effects of forward guidance in isolation, without

considering the empirical plausibility of responses to other shocks or the issues related

to determinacy in new-Keynesian environments.
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Figure 3: Effects of forward guidance in new-Keynesian models under alternative

specifications of the monetary policy rule.

3.3 Comparing Shocks in a Medium Scale DSGE Model

In our final application, we consider a set of six exogenous fundamental drivers within

our quantitative medium-scale DSGE model. The exogenous driving forces are gov-

ernment spending, investment-specific technology, neutral technology (TFP), interest

rate deviations, price markup shocks, and wage markup shocks.

Figure 4 displays the LPF(100) summary statistic for all six shocks under a variety

of policy coefficient ϕπ, after fixing ϕy = 0.5 and ρi = 0.5. The figure reveals several

interesting patterns. First, the effects of anticipated changes in government spending

are extremely small for all variables. This observation is particularly interesting be-

cause the literature that seeks to identify the effects of government spending includes

many attempts to control for such effects.9

Other shocks have relatively large anticipation effects only for certain variables.

For example, anticipated changes in the interest rate have relatively large effects on

investment, but much smaller anticipation effects on other variables. Qualitatively, a

similar story holds for investment specific productivity shocks.

9In simulations, however, Chahrour et al. (2012) have found that such controls are not important.
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Figure 4: ERF summary statistics for six “standard” shocks under different monetary

rules.

Moreover, for most shocks and variables, the relative importance of anticipation

effects generally falls modestly as policy become more restrictive. But there are

exceptions. For example, the effect of anticipated changes in price markup shocks on

GDP actually tend to increase for values of ϕπ larger than 1.25, and they are strongly

non-monotonic for consumption.

The most salient feature of Figure 4, however, are the extremely large values for

the LPF(100) statistic for the wage markup shock. In fact, it has the largest value of

LPF(100), for all four variables and for every policy variable depicted. This implies

that, relative to its impact effect, expectations of future wage markup shocks can

have very large effects on the economy. Moreover, the relative size of their LPF(100)

statistic (and similarly for other ERF summary statistics) doesn’t depend very much

on policy. One way to describe the intuition for this result is that the wage markup

shock is a particularly “stagflationary” economic disturbance, creating expectations

of both recession and increased inflation. The standard monetary policy rule can

do relatively little to offset expectations of such a shock, leaving it relatively high

latitude to influence endogenous variables.
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4 Conclusions

In this paper, we have shown how the expectation response function can be used

to isolate the effects of expectations in linear DSGE models. The tool separates as-

sumptions about exogenous processes, information, and expectations formation from

the direct effect of expectations themselves. In three applications, we have shown

how the tool can be used to diagnose issues related to expectations in some standard

models, and to uncover productive new avenues for future research on the effects of

expectations in the macroeconomy.
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Appendix

A Computing ERFs

Let, e.g., kt+1|t ≡ Êt[kt+1]. Then define[
k∗t

y∗t

]
≡ Z−1

[
kt

yt

]
so that system in (5) can we rewritten as

AZ

[
k∗t+1|t

y∗t+1|t

]
= BZ

[
k∗t

y∗t

]
+ Axxt+1|t +Bxxt. (11)

Premultiply equation (11) by Q to get[
S11 S12

0 S22

][
k∗t+1|t

y∗t+1|t

]
=

[
T11 T12

0 T22

][
k∗t

y∗t

]
+

[
Q1

Q2

]
Axxt+1|t +

[
Q1

Q2

]
Bxxt

(12)

Using equation (12), we can solve for

y∗t = T−1
22 S22y

∗
t+1|t − T−1

22 Q2Axxt+1|t − T−1
22 Q2Bxxt (13)

Letting Γ ≡ T−1
22 S22 and M ≡

[
T−1
22 Q2Ax + ΓT−1

22 Q2Bx

]
, we can solve for

y∗t = −T−1
22 Q2Bxxt − Γ0Mxt+1|t − Γ1Mxt+2|t + ... (14)

Noting that [
kt

yt

]
=

[
Z11 Z12

Z21 Z22

][
k∗t

y∗t

]
we have

yt = Z21Z
−1
11 kt + (Z22 − Z21Z

−1
11 Z12)y

∗
t . (15)

Combining (14) and (15), we have

∂yt
∂xt

= −(Z22 − Z21Z
−1
11 Z12)T

−1
22 Q2Bx

and
∂yt

∂xt+j|t
= −(Z22 − Z21Z

−1
11 Z12)Γ

j−1M

for all j > 0.
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B Model Summaries

Here we present a brief summary and calibrations details for each of the models

used in our applications above. The summaries are necessarily brief, and we provide

references for further details.

RBC model

The household maximizes utility by choosing {Ct, Ht, Kt+1}∞t=0 to maximize utility,

given by

E0

∞∑
t=0

βt (log(ct)− χHt) ,

subject to the flow budget constraints

Ct +Kt+1 − (1− δ)Kt = WtHt +RtKt.

Firms solve a static problem,

max
{Yt,Ht,Kt}

Yt −WtHt −RtKt subject to Yt = AtK
α
t H

1−α
t .

We linearize the model around a balanced-growth path in which the potentially non-

stationary productivity process At has no drift. The model parameters are β = 0.985,

α = 0.36, δ = 0.0125, and χ = 1.

Jaimovich and Rebelo (2009) Model

Our version of the Jaimovich and Rebelo (2009) model is identical to the baseline

version of their model. Relative to the RBC model above, it (i) adds type of habit

to preferences (ii) introduces variable capacity utilization (iii) introduces investment

adjustment costs. Like the RBC model, the decentralized equilibrium and planner so-

lutions give the same allocations. The planner chooses {Ct, Ht, It, Yt, ut, Xt, Kt+1}∞t=0

to maximize household utility,

E0

∞∑
t=0

βt (Ct − ψHθ
tXt)

1−σ

1− σ
,
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subject to the following constraints

Yt = Ct + It

Xt = Cγ
t X

1−γ
t−1

Kt+1 = It [1− φ (It/It−1)] + (1− δ(ut))Kt

Yt = At(utKt)
1−αHα

t

We use the same parameters as Jaimovich and Rebelo (2009). For parameters that

overlap with the RBC model, including σ = 1, these are identical to the RBC model

described above. For the remaining parameters, Jaimovich and Rebelo (2009) set θ =

1.4, γ = 0.001. In the linear-approximate solution, we only need to calibrate steady-

state values for the second derivative ϕ
′′
(1) = 1.3, δ(1) = 0.0125, and δ

′′
(1)/δ′(1) =

0.15.

New-Keynesian Model

The standard new-Keynesian model is derived similarly to the formulation in Wood-

ford (2003). Households choose {Cit, Hit}∞t=0 to maximize household utility,

E0

∞∑
t=0

βt

(
C1−σ

it

1− σ
− H1−ζ

it

1− ζ

)
,

subject to the flow budget constraint

PtCit +Bit = Rt−1Bi,t−1 +WitNit + Tt.

Wages are set in a monopolistically competitive manner, but without any nominal

stickiness. The real wage is given by

WR
t =

ηw
ηw − 1

CtN
ζ
t .

Firms maximize the net present value of profits subject to a CES demand function

Yit = Yt

(
Pit

Pt

)−ηp

a production function

Yit = (AtNit)
1−α,
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and a Calvo probability of adjusting prices θp.

For parameters, we the values from Blanchard et al. (2013) where possible (see

below). We use β = 0.99, σ = 1, θp = 0.877, α = 0.1859, ζ = 2.0871, and ηp = 41
3
.

Aggregating equilibrium conditions and linearizing around a non-stochastic steady

state yields the three-equation model

πt = κŷt + βEt[πt+1] (16)

ŷt = Et[ŷt+1 + πt+1 − it + (1− α)∆At+1] (17)

it = ρit−1 + (1− ρi)(ϕππt + ϕyŷt) + ϵt (18)

where κ = (1−βθp)(1−θp)

θp

1+ζ
1+α(ηp−1)

and it is the log of nominal interest rate.

Medium-scale model

Our medium scale model is that of Blanchard et al. (2013). This model adds several

features to the new-Keynesian model from the previous section; namely, habits in

consumption, variable capacity utilization, investment adjustment costs, government

consumption, and wage stickiness. Aside from parameters of the policy function,

all parameters correspond to the point estimates (posterior medians) reported in

Blanchard et al. (2013).
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